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1 REPORTING PERIOD

This report covers work performed by National Institute of Standards and
Technology (NIST) Robot Systems Division between October 1, 1990 and December
31, 1991 in continuation of work previously undertaken by NIST during FY90 for

the U.S. Air Force Next Generation Controller Program (NGC). This project is

being conducted under AGREEMENT No. F33615-89-C-5706 and MIPR No. FY1133-

91-N5056, dated 19 June 1991. The period of performance for this MIPR is from
March 1, 1991 through September 30, 1991. Air Force funding for this effort was ac-

tually received on July 9, 1991.

The work reported here is being leveraged with other Robot Systems Division

projects and is being partially funded using NIST internal funds as well as other

agency funds (i.e.. Navy MANTECH funds for the Automated Manufacturing
Research Facility (AMRF)).

2 PERSONNEL ASSIGNED

During this reporting period, the following personnel participated in this effort:

NIST, Manufacturing Engineering Laboratory, Robot Systems Division—823

Dr. James Albus
Richard Quintero

Fred Proctor

Dr. Nick Dagalakis

Hui-Min Huang
Adam Jacoff

Roger Kilmer
Dr. Tom Kramer
John Michaloski

Rick Norcross

Bob Russell

Keith Stouffer

Nicholas Tarnoff

Tom Wheatley

Principal Investigator

Deputy Project Manager
Project Technical Leader

ADACS
RCS Methodology
ADACS
ADACS/RCS Methodology
PDES/Enhanced Machine Tool Controller

RCS Methodology
ADACS/RCS Methodology
ADACS
ADACS
ADACS/RCS Methodology
RCS Methodology

NIST, Manufacturing Engineering Laboratory, Automated Production Technology
Division—822

Don Blomquist

Alkan Donmez
Enhanced Machine Tool Controller

Enhanced Machine Tool Controller
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The appellation following each name indicates the principal area of that person's

contribution:

ADACS (Advanced Deburring and Chamfering System) is the NIST robotics

testbed for NGC. The ADACS project is also funded by Navy MANTECH funds for

the Automated Manufacturing Research Facility (AMRF). The Navy money is pay-

ing for the robot and control system hardware, the computer controlled deburring

tool, and the analysis of the deburring process. Air Force NGC funds have been pro-

posed to support the development and installation of an NGC controller and NGC
software on the ADACS workstation. During 1991, ADACS was used as a testbed for

developing NML recommendations to the NGC team.

RCS Methodology is a NIST funded project that is using the Real-time Control

System (RCS) reference model architecture to develop an engineering methodology
and software tools for design and implementation of real-time intelligent control

systems.

PDFS indicates work on the problem of interfacing data to the NGC ADACS con-

troller through the PDFS (Product Data Exchange Specification) format.

Enhanced Machine Tool Controller indicates a NIST FY 92 project to bring up an
NGC controller on a Monarch vertical spindle mill for a macfdning workstation in

the AMRF. This project will also be funded by Navy MANTECH funds for the

AMRF. The Navy money will pay for the machine tool, control system hardware,

and studies of accuracy enhancement through software thermal compensation and
tool wear compensation. The proposed FY 92 Air Force NGC funds for Tasks 4 and 5

will support the development and installation of an NGC controller and NGC soft-

ware on the machining workstation.

3 PROGRESS

3.1 Task 1: Review and Critique NGC Technical Activities/Documents

This year's effort started with a "kickoff" meeting between Martin Marietta (MM)
and NIST on October 26, 1990 at NIST in Gaithersburg, Maryland. Following that

meeting NIST personnel participated in NGC Industry Review Board (IRB) meet-

ings on December 4-5, 1990 and June 25-26, 1991.

At the December 4-5 1990 IRB meeting, Jim Albus gave a presentation on the

NIST work on a Strawman NML and Strawman World Model for the NGC.
At the June 25-26 1991 IRB meeting, Jim Albus presented the NIST work on Task

Frames, Command Frames, and World Model information needed to support the

NML.
Jim Albus, Fred Proctor, John Michaloski and Tom Wheatley participated in the

NGC IDEF Module Decomposition Workshop in Denver on February 5-7, 1991. As
a result of that meeting, NIST personnel generated a mapping between the NGC
IDEF diagrams reviewed at the workshop and the NIST NASREM architecture.

This technical report was forwarded to MM as a memo on February 27, 1991.

NIST hosted an FY92 planning meeting with Mickey Hitchcock and Martin

Marietta, on October 16, 1991, at NIST in Gaithersburg, Maryland. During that meet-
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ing we discussed how NIST might change its role, in support of the NGC program,

from primarily a government consultant to one of active support for the NGC
Demonstration Tasks 4 through 7. We also discussed the possibility of a NIST role

in the Low End Controller (LEC) project.

NIST personnel, Jim Albus, Fred Proctor and John Michaloski, attended the NGC
TAG meeting on October 17 and 18, 1991, in Denver, Colorado. The purpose of this

meeting was to hold a technical discussion of the progress Martin Marietta and its

subcontractors have made toward the SOSAS. The current state of the SOSAS was
presented and the meeting participants reviewed the technical specification and de-

sign of the NGC.
Jim Albus, Rick Quintero, John Michaloski, and Alkan Donmez participated in

the NGC/LEC Control Builders Workshop at MMC, Littleton, Colorado starting on
October 28, 1991 through November 11, 1991. Jim Albus made a presentation at that

meeting which reviewed our current thinking in the areas of NML, World Model
data structures and performance measures for robots.

Tom Kramer reviewed a draft University of Texas paper on NGC information

models, the first draft of schemas for NML written in EXPRESS.

3.2 Task 2: Develop Strawman NML Commands and Protocols

In order to accomplish this task, it is necessary to define the functionality of the

NGC modules. For example, what needs to be communicated between modules de-

pends on what the modules already know. If they know everything, then nothing

needs to be communicated. If they know nothing, then everything needs to be com-
municated. In the NGC, it is assumed that the modules know quite a bit. What
they know, and how that knowledge is stored and used is critical to the performance
of NGC in general, and to the structure of the NML in particular.

Throughout the past year, there has been a great deal of discussion and contro-

versy within the NGC project as to the definition of NGC modules, particularly re-

lated to the granularity and functionality of those modules. Some have argued for

course granularity with the internal structure of the NGC subsystems left up to the

vendors. Others have argued for fine granularity so that the internal structure of

the subsystems is visible to the users in a truly "open system architecture".

As a result of this controversy, the definition of the NGC modules has been in a

state of flux, with a great deal of uncertainty as to what the final form of the NGC
Specification for an Open System Architecture Standard (SOSAS) will be. One ap-

proach to this problem has been to attempt to define SOSAS conformance classes.

From this approach came the Low End Controller, which represents the coarsest of

the proposed granularities, with the least functionality.

NIST has taken the opposite approach. NIST has chosen to pursue the finest

possible granularity, with the most functionality. Our rational is that, given a suffi-

ciently fine granularity, any of the proposed NGC systems can easily be achieved by
simply clustering fine granularity modules into the desired coarser granularity mod-
ules. Adding fine granularity modules can increase functionality, and hence, any of

the NGC conformance classes can be achieved from a single set of fine granularity

building blocks.

In pursuing this approach, NIST has used the RCS (Real-time Control System)
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reference model architecture that has been developed at NIST over the past 15 years.

RCS has a systematic regularity and recursive structure that has recently been devel-

oped into a canonical form for intelligent machine systems. RCS is perhaps best

known as a precursor to the NBS/NASA Reference Model architecture (NASREM)
for telerobotic systems. Partly because NASREM influenced both the requirements

and the system architecture of the NGC, there exists a close correspondence between
the RCS reference model and the NGC architecture. A description of that correspon-

dence is given below.

Translation from the RCS reference model representation into the NGC architec-

ture as defined in the June 1991 Next Generation Workstation/Machine Controller

Architecture Definition Document is thus straightforward. The translation from
RCS to NGC has been carried out in several sections of this report without difficulty.

The remainder of the translation will be carried out during the coming year 's activi-

ties. It should also be noted that NIST is currently working on representing portions

of the RCS reference model in EXPRESS, using ALPS to describe process plans, and
using PDES/STEP for part descriptions. This will further facilitate easy translation

between RCS and NGC SOSAS representations.

Among the advantages of the RCS->NGC approach is that an enormous amount
of prior and on-going work on RCS can be leveraged into the NGC program. For ex-

ample, much of the work in the NIST Automated Manufacturing Research Facility

and particularly the current work on robotic deburring under the Advanced
Chamfering and Deburring System (ADACS) project, as well as the work on
Enhanced Machine Tool Control can be immediately applied to the NGC program.
In addition, much of the work done by NIST for NASA on space station telerobotics,

for DARPA on intelligent control systems for undersea vehicles and nuclear sub-

marines, the work being done for the Bureau of Mines on coal mine automation,

the work being done for the Army/Marine Corps unmanned ground vehicle pro-

gram, the work being done for the U.S. Postal Service on Post Office automation,

and the work internally funded under the Department of Commerce Intelligent

Machine Systems initiative can be brought to bear on the NGC problem domain. For

example, during the past two years under these programs a theoretical model for in-

telligent systems has been developed, RCS has evolved into a canonical form, and a

variety of intelligent system design techniques, task analysis methodologies, and
software development tools have been developed. These are summarized in two
recent publications, "Outline for a Theory of Intelligence", and "A Reference Model
Architecture for Intelligent Systems Design". Copies of these documents are con-

tained in Appendix A. A methodology for developing hierarchical controllers, the

"Handbook for Real-Time Intelligent System Design" has also been written, and is to

be published.

3.2.1 A Mapping Between RCS and NGC

The following is an example of a mapping between RCS and NGC, which is based
on the June 1991 version of the NGC Architecture Definition Document prepared by
Martin Marietta:
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The NGC Workstation Management Subsystem

The NGC Workstation Executive Module corresponds to the RCS level

5 (workstation) Job Assignment submodule.

NGC External Coordinator Module input and data distribution func-

tions are handled in RCS by the level 5 (workstation) Job Assignment

submodule. Output functions of the NGC External Coordinator

Module are handled in RCS by the level 5 Executor submodules.

NGC configuration Manager Module and Asset Manager Module func-

tions are also performed by the RCS level 5 Job Assignment submod-
ule.

NGC Health Manager Module functions are handled at the appropriate

levels by RCS Executor submodules at all levels of the RCS hierarchy.

At each level, each RCS Executor submodule monitors the health and
safety of the subsystem under its control and reports problems through

status reports posted in the world model and/or transmitted to the

level above.

The NGC Workstation Planning Subsystem corresponds directly to the

RCS planner submodules at levels 3, 4, and 5. These generate Control

Plans, Coordinated Control Plans, and Operations Plans respectively.

The principle difference between NGC and RCS is that the NGC
Workstation Planning Subsystem operates off-line, whereas the RCS
planners at each level operate under the real-time constraints appropri-

ate to their respective level.

In particular, the NGC Operations Planner Module corresponds directly

to the set of RCS level 5 (workstation) Planners that generate plans for

each of the pieces of equipment in the workstation.

The NGC Task Planner Module corresponds directly to the set of RCS
level 4 (task) Planners that generate and coordinate sequences of NGC
task elements (RCS E-Moves) for each of the equipment subsystems.

The NGC Path Planner Module corresponds directly to the set of RCS
level 3 (E-move) Planners that generate and coordinate sequences of

collision-free paths for tools, inspection probes, or grippers.

The NGC Modeler Module corresponds directly to the set of models
that reside in the RCS world model at their respective levels.
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The NGC Human Interface Subsystem

The NGC Human Interface Subsystem corresponds exactly to the RCS
operator interface module.

The NGC Task Execution Subsystem

The NGC Task Coordinator Module corresponds directly to the set of

RCS level 4 (Task) Executor submodules plus the RCS level 4 World
Model.

The NGC Control Subsystem

The NGC Machine Executive Module corresponds directly to the set of

RCS level 3 (E-Move) Executor submodules plus the RCS level 3 World
Model.

The NGC Profile Generator Module corresponds directly to the set of

RCS level 2 (Primitive) task decomposition modules plus the RCS
level 2 World Model.

The NGC Control Law module corresponds directly to the set of RCS
level 1 (Servo) task decomposition modules plus the RCS level 1

World Model.

The NGC Sensor/Effector Subsystem

The NGC Sensor/Effector subsystem is the only feature of NGC not ex-

plicitly represented in RCS. RCS implicitly represents the

Sensor/ Effector subsystem by the interface between the RCS control sys-

tem and its sensors and actuators.

On the other hand, RCS explicitly represents the processing of sensory

information by a hierarchy of Sensory Processing modules that keep
the RCS World Model knowledge database (NGC Information Base)

updated with current sensory data. NGC does not explicitly represent

Sensory Processing modules. They are implicitly represented in NGC
by sensor subsystems.

For most current machine tool applications this is quite adequate.

However, for some sophisticated robotic or inspection applications it

may present problems. This is because many intelligent machine sys-

tem applications require tightly coupled interactions between world
model knowledge and sensory processing algorithms. These types of

applications may involve "model-based processing" of sensory infor-

mation, recursive estimation of world model parameters, or task driv-

en control of sensory systems. These kinds of operations can not easily
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be handled without explicitly representing Sensory Processing modules
at each level of the control system hierarchy.

3.2.2 NGC Module Functionality

Fundamental to functionality is the representation and use of task knowl-
edge. A task is a piece of work to be done, or an activity to be performed. For

any TD module, there exists a set of tasks that the TD module knows how to

do. Each task in this set can be assigned a name. The task vocabulary is the

set of task names assigned to the set of tasks each TD module is capable of per-

forming.

Knowledge of how to perform a task may be represented in a frame data

structure. Task frames are data structures that capture a specification of the

tasks that a given module can perform. This specification can be compared to

a recipe in a cook book. The following is a template for a task frame:

TASKNAME Name of the task

GOAL Event or condition that successfully terminates the

task

OBJECT Identification of thing to be acted upon

PARAMETERS Priority

Status (e.g. active, waiting, inactive)

Timing (e.g. speed, completion time)

Coordinate system in which task is expressed

Stiffness matrices

Tolerances

AGENTS Identification of subsystems that will perform the

task

REQUIREMENTS Feedback information required from the world
model during the task

Tools, time, resources, and materials needed to per-

form the task

Enabling conditions that must be satisfied to begin

or continue the task

Disabling conditions that will interrupt or abort the

task activity

PROCEDURES Pre-computed plans or scripts for executing the task

Planning algorithms

Functions that may be called

Emergency procedures for each disabling condition
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The TASKNAME is a String that identifies the type of activity to be per-

formed.

The GOAL may be a vector that defines an attractor value, set point, or

desired state to be achieved by the task. The goal may also be a map,
graph, or geometric data structure that defines a desired "to-be" condi-

tion of an object, or arrangement of components.

The OBJECT attribute is a string that identifies what object is to be effect-

ed by the task. The value of the object attribute is a pointer to an entity

frame in the world model that describes the object to be acted upon.

The values of PARAMETERS attributes uniquely identify a specific instan-

tiation of the task, and define priority, speed, stiffness, coordinate

frames, tolerances, etc. for the specific task.

AGENTS are the subsystems to be enlisted in the task activity.

The REQUIREMENTS section includes information required during the

task. This may consist of a list of state variables, maps, and/or geomet-

rical data structures that convey actual, or "as-is" conditions that cur-

rently exist in the world. Requirements may also include resources,

tools, materials, time, and conditions needed for performing the task.

The PROCEDURES section contains either a set of pre-computed plans or

scripts for decomposing the task, or one or more planning algorithms

for generating a plan, or both. For example, the procedure section may
contain a set of IF/THEN rules that select a plan appropriate to the "as-

is" conditions reported by the world model. Alternatively, the proce-

dure section may contain a planning algorithm that computes the dif-

ference between "to-be" and "as-is" conditions. This difference may
then be treated as an error that the task planner attempts to reduce, or

null through "Means/Ends Analysis" or A*^ search. Each subsystem
planner would then develop a sequence of subtasks designed to mini-

mize its subsystem error over an interval from the present to its plan-

ning horizon. In either case, each executor would act as a feedback con-

troller, attempting to servo its respective subsystem to follow its plan.

The procedure section also contains emergency procedures that can be

executed immediately upon the detection of a disabling condition.

In plans involving concurrent job activity by different subsystems, there may be

mutual constraints. For example, a start-event for a subtask activity in one subsys-

tem may depend on the goal-event for a subtask activity in another subsystem.

Some tasks may require concurrent and cooperative action by several subsystems.

This requires that both planning and execution of subsystem plans be coordinated.'

In several RCS designs, human operators are an integral part of some computa-
tional nodes. This allows tasks that cannot yet be done automatically to be done in-

* The reader should not infer from this discussion or others throughout this report that all these difficult technical
problems have been solved. The RCS architecture provides a framework wherein each of these problems can be isolat-

ed and explicitly represented and input/output relationships can be defined. The RCS architecture dies not specify the
algorithms by which planning and constraint resolution are performed.
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teractively by humans. In the NIST Automated Deburring and Chamfering System

workstation, for example, the tasks of the fixturing subsystem are currently per-

formed by a human operator. In future versions, these tasks will be performed auto-

matically by a new node in the control system architecture.

The library of task frames that reside in each TD module define the capability of

the TD module. The names of the task frames in the library define the set of task

commands that TD module will accept. There, of course, may be several alternative

ways that a task can be accomplished. Alternative task or job decompositions can be

represented by an AND/OR graph in the procedure section of the task frame.

The agents, requirements, and procedures in the task frame specify for the TD
module "how to do" commanded tasks. This information is a-priori resident in the

task frame library of the TD module. The goal, object, and parameters specify "what

to do", "on what object", "when", "how fast", etc.

The relationship between task frames and NML commands is shown in Figure 1.

The NML command is expressed in the form of a command frame. The command
frame consists of a task name, a goal to be achieved, an object to be acted on, and a

set of parameters such as hand shake flags, how fast the task is to be performed, what
priority it has, etc. The command frame specifies what to do. The task frame speci-

fies how to do it. The command frame is communicated from a supervisor module
to a subordinate. The task frames reside in the subordinate receiving the command.
The name of the command must refer to a task frame in the library of the subordi-

nate module, or the command cannot be executed.

When an NGC module inputs a task command, it searches its library of task

frames to find a task name that matches the command name. Once a match is

found, the goal, object, and parameter attributes from the command are transferred

into the task frame. This activates the task frame, and as soon as the requirements

listed in the task frame are met, the TD module can begin executing the task plan

that carries out the job of task decomposition.

Task knowledge is typically difficult to discover, but once known, can be readi-

ly used and duplicated. For example, the proper way to mill a pocket, drill a hole, or

fixture a part may be difficult to derive from first principles. However, once such

knowledge is known and represented in a task frame, it is relatively easy to trans-

form into executable code.

Because the task frame encapsulates both the functionality of the NGC modules
and the information that must be communicated into and out of the NGC modules,

a major part of the NIST effort in defining a strawman NML for the NGC has fo-

cused on the development of a methodology for creating task frames.

Once the library of task frames has been defined, a vocabulary of NML statements

may be defined for each of the communication pathways between NGC modules.
A strawman subset of NML statements that apply to machine tool NGC modules

is contained in Appendix C. A similar subset of I'^L was defined for robots in last

year's final technical report to the AF NGC program office entitled A Strawman
Neutral Manufacturing Language (NML) dated February 28, 1991. Another similar

subset of NML can be defined for coordinate measuring machines, and pro-

grammable controllers.

A set of NGC commands for 3-axis machining has also been defined and are pro-

vided as Appendix D.
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NGC Module
Task Frame Library

Match
NML Command Frame

^ XI A XIF

-- Pnol

^

Agents

Requirements

Procedures (Plans)

Supplied by NML command

Specifies what to do

Vocabularly of NML commands matches
library of NGC task frames

Resident in NGC module

Specifies how to do tasks

Library of task frames defines

NGC module capability

Figure 1. The relationship between commands and task frames

3.2.3 The Advanced Deburring and Chamfering System

NIST has developed automated finishing systems which use CAD data to gener-

ate robot programs, and has refined techniques to integrate sensory feedback into the

real-time control of deburring and chamfering. Efforts are currently underway in

the Advanced Deburring and Chamfering System (ADACS) to automate the finish-

ing of aircraft engine components, such as turbine blades and rotors machined from

inconel and titanium, whose hardness and complexity challenges commercial robot-

ic finishing systems. The approach is to use a conventional T3-646 electric 6-axis

robot as a coarse positioning device, while relying on an instrumented chamfering

tool which is independently controlled to provide variable force and stiffness at the

edges. NIST researchers are working jointly with United Technologies Research

Center (UTRC) in this program, blending NIST's experience in robot control and
sensor integration with the expertise of UTRC in the fabrication and finishing of air-

craft engine components.

The ADACS workcell of the AMRF was selected by NIST as a testbed for studying

the implementation of the NGC architecture in a robotic workcell. This workcell

consists of the components shown in Figure 2. A complete set of task frames and
command frames was designed for the ADACS scenario, and is included as

Appendix E.
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Figure 2. The Advanced Deburring and Chamfering System

Fred Proctor has been leading the effort to design and implement an open-archi-

tecture controller for the ADACS. His team has focused on the task knowledge rep-

resentation, and the basic planning and execution engines in C and C++ which
allow plans to be generated and executed in a consistent way across each level in the

hierarchy. Additionally, a mathematics library for kinematics was developed and
applied to robot trajectory planning for chamfering. Supporting our work in plan-

ning and execution, we have begun an Application Programming Interface (API) for

communication, building on work performed at NIST, Martin Marietta, and else-

where.

ADACS Simulation and Process Planning

A simulation of the ADACS has been developed to aid the off-line programming
of chamfering trajectories. The simulation runs on a Silicon Graphics IRIS comput-
er, in the CimStation modeling environment from Silma. The simulation includes

the kinematics of the Cincinnati Milacron T3 robot and TriKinetics Adaptive
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Debarring Tool (ADT), fixturing devices, and other objects in the ADACS. The robot

and debarring tool are interfaced to a real-time control system which daplicates that

in the real ADACS, allowing trae robot and tool plans to be previewed in simala-

tion before being applied on the shop floor. This off-line programming capability al-

lows candidate plans to be qaickly generated and tested withoat compromising safe-

ty or ap-time. The display for the simalation has been extended so that commands
received and the statas of varioas workcell components can be easily viewed.

The ADACS simalation has been employed to develop Task Frames and their

application to the Neatral Manafactaring Langaage. In particalar, a set of Task

Frames parsaant to the NIST Strawman Neatral Manafactaring Langaage have

been enamerated for ADACS, and process plans for each have been interactively

generated and tested on this simalator. A tool for viewing and editing ADACS task

frames is shown in Figare 3.

Hierarchy Level: ADACS EMove

Commands:

startup-adacs-emove

chamfer-feature

ADACSWertcstdien
move-t3

fixture-part

unfixture-part

shutdown-adacs-emove

ADACS EMove

ADT Servo ADT Power T3 Power

HDHCS Task Frames

Figure 3. Macintosh HyperCard Tool for viewing and editing Task Frames

Nicholas Tarnoff has been developing a process planning system for ADACS.
The objective of this work is to develop, assemble and integrate visaally interactive

tools for the development of process plans. The context for this work is an evolving

methodology heavily based on consistent ase of graphically interactive techniqaes.

The process planning system is able to simalate ADACS controller modales, and
is interfaced to the workcell component simalator described above. The system also
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provides various means of input and display for each of the simulated components.

A command line interface is available for input to the simulated control modules.

Control module status is displayed graphically. ADACS devices and parts are dis-

played as 3D solids and an ADACS force model is displayed in 2D. This system en-

ables one to relatively quickly and iteratively explore task frames, NML, planning,

world model, CASE, and other issues as part of actually developing a control system.

Motion Planning for ADACS

The robot Cartesian motion planner was improved to allow for the off-line gen-

eration of motion plans that can be quickly executed to reduce on-line planning

delay. In normal operation, the plan for robot trajectories and tool force and speed is

executed interpretively, and planning for complex sequences of moves slows down
the processing. In the enhanced version of this planning and execution, complex
plans may be generated off-line and converted to a larger but much "flatter" format,

which can be executed with no planning. This option allows plans to be developed

interactively, and optimized for execution when they have been demonstrated to

run correctly.

ADACS NGC Virtual Machine (VM)

The purpose of the Virtual Machine is to logically abstract the application from
the implementation. This abstraction is usually part of a broader concept, referred to

in software terminology, as the Application Programmer Interface (API). Potential

areas for API definitions include:

General System Software API Definitions

• cyclic process model
• communication using NML
• timing
• exception handling
• synchronization
• tasking

NGC API

• Data Modeling
• Entity Based : name-attribute, attribute-value

• Process Planning
• Feature Based Machining,
• Task Frames

We have designed and implemented a prototype API for NML communication,
as well as an API for an RCS cyclic process model. We are exploring the timing needs
of the API cyclic model.

Our implementation at NIST used an object-oriented approach to define any
API. Within the definition of an API, a predefined set of methods are described that
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the user instantiates when defining the API model. An instantiation of an API cre-

ates a process or communication object and then assigns the desired methods. For

the cyclic process model, the method instantiation includes defining the following

methods: initialization, step, run, suspend, resume, monitor (for debugging, diag-

nostics and timing configuration). The section below on NML describes its methods.

NML and Virtual Machine Communication API

As part of our effort to standardize the source code interface for an open-architec-

ture controller, we have developed an Application Programmer Interface (API) for

communication. Building on C source code given to us by Martin Marietta, we
have extended the communications mechanism to include the NIST-developed
Common Memory Manager (CMM). The CMM is a distributed client-server com-
munications protocol which runs over a network, and has been demonstrated in

the Automated Manufacturing Research Facility. We have ported the NIST CMM
code to run on our VxWorks real-time operating system, in anticipation of includ-

ing the process planning language ALPS. This way, a standard for plan representa-

tion and communication can be used by code developers working on this open-ar-

chitecture controller.

For the communication API, the VM abstracts the communication process from
the physical computational platform (PC, SUN, VAX, 680x0 target hardware, etc.)

and the communication link (shared memory, Ethernet, etc.). We have implement-
ed a NGC/VM communication model that abstracts the communication process

from the user. All communication is done through READs and WRITES to NML
message buffers. An object-oriented approach is used to define the NML message
buffers. Within the definition of an NML message buffer, a predefined set of meth-

ods are available (init, read, write, getopt, setopt, and close). The user config-

ures an NML message descriptor, and then uses this descriptor for any future reads

or writes.

These NML message buffers are configured according to a centralized configura-

tion file format, (i.e., common memory reader-writer, TCP sockets, UDP sockets, etc.)

that supplies the necessary underlying implementation parametrization (i.e., com-
mon memory may need an identihcation key or address, TCP sockets need host

names and port numbers, etc.). This centralized configuration file could then be in-

corporated as a part of a System Integration and Configuration Tool (SICT). In evo-

lutionary terms, a SICT should allow an NGC user to build a system around an

available computer platform and communication links, without regard to the porta-

bility of the application code.

Future NML Work

In our labs we have implemented NML API that allow simple file-based recon-

figuration (without system recompilation) of the system platform and links. We
consider this an important step in evaluating NGC issues. Using this technology, we
have developed a shell of a layered NGC architecture. We hope to flesh out the shell

with appropriate technologies and other API in the future. Topics to be addressed in
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the future include:

• understanding the role of timing and NML in configurations.

• developing plans /scripts to be executed by a process model.
• integrating a "seamless" graphical user interface (GUI) within the NML commu-

nication model.
• integrating other research activities into the NGC API model. We intend to use

the NIST PDES/STEP existing process models and part planning methods as an
information base part and process model API for an NGC.

• integrating task frame specification into the API model. Task frames offer a

broader API view of the part planning.

3.3 Task 3: Define Strawman World Model Data Structures

Much of the power of the NGC/RCS/RCS architecture derives from knowledge
stored in the world model. The world model knowledge database (KD) includes

both a-priori information which is available to the intelligent system before action

begins, and a-posterior knowledge which is gained from sensing the environment

as action proceeds. The KD represents information about space, time, entities,

events, states of the world, and laws of nature. Knowledge about space is represent-

ed in maps. Knowledge about entities, events, and states is represented in lists and
frames. Knowledge about the laws of physics, chemistry, optics, and the rules of

logic and mathematics is represented in the WM functions that generate predictions

and simulate results of hypothetical actions. Laws of nature may be represented as

formulae, or as IF/THEN rules of what happens under certain situations, such as

when things are pushed, thrown, or dropped.
The world model also includes knowledge about the intelligent system itself,

such as the values assigned to goal priorities, attribute values assigned to objects,

and events; parameters defining kinematic and dynamic models of robot arms or

machine tool stages; state variables describing internal pressure, temperature, clocks,

fuel levels, body fluid chemistry; the state of all the currently executing processes in

each of the computational modules; etc.

The correctness and consistency of world model knowledge is verified by sensors

and sensory processing SP mechanisms that measure differences between world
model predictions and sensory observations. These differences may be used by re-

cursive estimation algorithms to keep the world model state variables the best esti-

mates of the state of the world. Attention algorithms may be used to limit the num-
ber of state variables that must be kept up-to-date and any one time^

.

3.3.1 World Model Information Organization

Information in the world model knowledge database may be organized as state

variables, system parameters, maps, and entity frames, as described below:

^ The reader should not infer from this discussion or others throughout this report that all these difficult technical

problems have been solved. The RCS architecture provides a framework wherein each of these problems can be isolat-

ed and explicitly represented and input/output relationships can be defined. The RCS architecture dies not specify the
algorithms by which planning and constraint resolution are performed.
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State variables

State variables define the current value of entity and system attributes.

A state variable may define the state of a clock, the position, orienta-

tion, and velocity of a gripper, the position, velocity, and torque of an
actuator, or the state of a computing module.

System parameters

System parameters define the kinematic and dynamic characteristics of

the system being controlled, e.g., the inertia of objects, machines, and
tools. System parameters may also define coordinate transforms neces-

sary to transform commands and sensory information from one work-
ing coordinate system to another.

Entity Frames

An entity frame is a symbolic list structure, in which the ENTITY
NAME is the list head, and in which knowledge about the entity is

stored as attribute-value pairs (or attribute-list pairs). The world model
contains a list of all the entities that the intelligent system knows
about. A subset of this list is the set of current entities known to be pre-

sent in any given situation. A subset of the list of current entities is the

set of entities of attention. These are the entities that the system is cur-

rently acting upon, or is planning to act upon momentarily.

There are two types of entities: generic and specific. A generic entity is

an example of a class of entities. A generic entity frame contains the at-

tributes of its class. A specific entity is a particular instance of an entity.

A specific entity frame inherits the attributes of its class. A template for

an entity frame is shown below:

ENTITY NAME
KIND
TYPE

LEVEL

POSITION
ORIENTATION
COORDINATES
DYNAMICS
TRAJECTORY
GEOMETRY

SUBENTITIES

part id#, lot#, etc.

model#
generic or specific

point, line, surface, object, group

map location of center of mass (time, uncertainty)

coordinate axes directions (time, uncertainty)

coordinate system of map
velocity,acceleration (time, uncertainty)

sequence of positions (time, uncertainty)

center of gravity (uncertainty)

axis of symmetry (uncertainty)

size (uncertainty)

boundaries (uncertainty)

pointers to lower level entities that make up
named entity
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PARENT ENTITY

PROPERTIES

VALUES
DUE DATE

pointer to higher level entity of which named enti-

ty is part

mass, color, hardness, smoothness, etc.

sunk cost, value at completion

date required

Different levels of entities exist at different levels of the hierarchy. At level 1, en-

tity frames describe points; at level 2, entity frames describe lines and vertices; at

level 3, they describe surfaces; at level four, objects; and at level 5, groups; at level 6

and above, entity frames describe higher order groups. Figure 4 shows the object

oriented structure of the entity database in the world model.

Figure 4. Object oriented relationships between entity frames at different hierarchical levels

3.3.2 Maps

Maps describe the distribution of entities in space. Each point, or pixel, on a map
may have a pointer that points to the name of the entity that projects to that point

on the map. A pixel may also have one or more attribute-value pairs. For example, a

map pixel may have a brightness, or color (as in an image), or an altitude (as in a to-

pographic map). A map may also be represented by a graph that indicates routes be-

tween locations, for example, the routes available to robot carts moving between
workstations.

Any specific map is defined in a particular coordinate frame. There are three

general types of map coordinate frames that are important: world coordinates, object

coordinates, and egospheres. An egosphere is a spherical coordinate system with the
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intelligent sensor system at the origin and properties of the world are projected onto

the surface of the sphere. World, object, and egosphere coordinate frames are dis-

cussed more extensively in the paper "Outline for a Theory of Intelligence" in

Appendix A.

3.3.3 Map-Entity Relationships

Map and entity representations may be cross referenced in the world model as

shown in Figure 5. For example, each entity frame may contain a set of geometrical

and state parameters that enables the world model to project that entity onto a map.
The world model can thus compute the set of egosphere or world map pixels cov-

ered by an entity. By this means, entity parameters can be inherited by map pixels,

and hence entity attributes can be overlaid on maps.

Maps Entities

( iconic arrays, graphs) ( symbolic lists)

Figixre 5. Map-entity relationships in a world model for manufacturing. The world model provides pro-

cesses by which symbolic entity frames can be transformed into maps, and vice versa.

Conversely, each pixel on a map may have pointers to entities covered by that

pixel. For example, a pixel may have a pointer to a point entity whose frame con-

tains the projected distance or range to the point covered by that pixel. Each pixel

may also have a pointer to a line entity frame indicating the position and orienta-

tion of an edge, line, or vertex covered by the pixel. Each pixel may also have a
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pointer to a surface entity indicating position and orientation of a surface covered by
the pixel. Each pixel may have a pointer to an object entity indicating the name of

the object covered, and a pointer to a group entity indicating the name of the group
covered.

The world model thus provides cross referencing between pixel maps and entity

frames. Each level of world modeling can thus predict what objects will look like to

sensors, and each level of sensory processing can compare sensory observations with

world model predictions^

3.3.4 Example Knowledge Database for Manufacturing

An example of a knowledge database for a machine tool in a manufacturing

workstation might be the following:

Level 1

STATE VARIABLES State clock and sync signals

State vector that defines the best estimate of the posi-

tion, velocity, and force of each actuator (motor

solenoid, servo valve, etc.), and each degree of freedom
(slide, rotation)

Status of each switch or discrete actuator

State variables from the Human Interface

SYSTEM PARAMETERS Joint limit margin for each actuator

Gravity compensation factors (if any)

Inertia matrix (if required)

Gain matrix for actuator controllers

Forward and inverse kinematic transform from tool-

tip to actuator coordinates

Forward and inverse transform from sensor egosphere

to end-effector egosphere (if required)

MAPS Machine tool map overlaid with sensors and actuators

showing sensor state variable indicated by bar-graphs,

dials, colors, or numerical symbols

Level 2

STATE VARIABLES State clock and sync signals

State vector defining the best estimate of tool position,

velocity, force, etc.

Estimated time or distance to end of current trajectory

segment
State variables from Human Interface

* The reader should not infer from this discussion that such a cross-coupled systems have been fully implemented, or
that it is even well understood how to implement such systems for real-time operations. What is described is the kind
of cross-coupled system that will be necessary in order to achieve truly intelligent robotic systems. It seems likely that

fecial purpose hardware and firmware will need to be developed. Clearly, much additional research remains to be
(done before these problems are solved. The RCS reference model architecture simply defines how such processes
should be organized and what interfaces need to be defined.
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SYSTEM PARAMETERS

ENTITY FRAMES

MAPS

Level 3

STATE VARIABLES

SYSTEM PARAMETERS

ENTITY FRAMES

MAPS

Level 4

STATE VARIABLES

Forward and inverse force and velocity coordinate

transform from part to tool-tip coordinates (including

tool radius compensation)

Forward and inverse transform for sensory processing

algorithms (if needed)

Machine tool dynamic model
Load dynamic model
Limits of travel in coordinate system of command
Positions of singularities

Position, velocity, and force limit

Linear entity frames (lines, curves, trajectories,

NURBS, vertices, etc.) for entities of attention (current

planned tool-path, next tool-path, current observed

tool-path, trace of following errors, etc.)

Part feature map overlaid with projection of linear en-

tities such as observed and planned tool paths, etc.

If there is a vision system, overlay of part feature map
on image from camera

State clock and sync signals

Best fit trajectories for observed poses, velocities, and
forces of tool relative to part feature surfaces

Estimated time or distance to nearest part surface con-

tact

Estimated clearance or distance to nearest obstacle sur-

faces

State variables from Human Interface

Forward and inverse transform from fixture to part co-

ordinates

Limits of travel in coordinate system of command

Surface entity frames defining position and geometry
of "as-is" part features, "to-be" part features, and fixture

surfaces, edges, alignment pins, etc.

Part map overlaid with projection of as-is part feature

surfaces, to-be part feature surfaces, tool-path swept-

volumes, etc. showing graphic image of tool tip rela-

tive to surface of part being machine

State clock and sync signals from other equipment
Best estimate observed degree of task completion

State of task enabling and disabling conditions

State variables from Human Interface
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SYSTEM PARAMETERS Task enabling and disabling conditions

Forward and inverse transform from machine tool

coordinates to part fixture coordinates

ENTITY FRAMES Object entity frames for objects of attention (robots, ma-
chine tools, as-is parts, to-be parts, part buffers, trays,

fixtures, tool racks, free space, grippers, tools,

fasteners, etc.)

MAPS Machine tool workspace map overlaid with projec-

tions of objects of attention, plus swept volumes of

planned sequences of part and tool motions

Level 5

STATE VARIABLES State clock and sync signals from other equipment
Observed degree of task completion

State of task enabling and disabling conditions

State variables from Human Interface

SYSTEM PARAMETERS Forward and inverse transforms from workstation to

machine tool coordinates

Definition of task enabling and disabling conditions

Workstation task timing model
Cost/benefit evaluation function for planning results

ENTITY FRAMES Group entity frames for workstation equipment ar-

rangement, and groups of as-is and to-be groups of

parts and tools arranged in trays, buffers, tool racks, etc.

MAPS Workstation map overlaid with projections of equip-

ment and groups of parts arranged on buffer tables and
trays, tools in tool racks, etc.

3.4 Task 4: Define Strawman NGC Robot Performance Measures and
Measurements

The strawman performance measures and measurements work described here

are designed for the ADACS project being used as a testbed for the support of this

NGC effort. Working jointly with the United Technologies Research Center

(UTRC), Nicholas Dagalakis has developed a set of performance measures for the

robotic deburring and chamfering of hard metal parts, which is presently being test-

ed. These performance measures can be divided into three categories:

3.4.1 Dynamic Response Performance

The objective of this performance measure is to evaluate the ability of the robot

and the deburring tool holder to react to dynamic loads created by the deburring pro-

cess. The amplitude of the displacement of the tool holder tip, in response to dy-

namic forces with amplitude equal to the maximum expected to be applied during
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the deburring of a particular metal, should not exceed the maximum amplitude of

the desired edge roughness.

During this test the frequency response of the robot and the deburring tool hold-

er to external forces are determined using an instrumented hammer and accelerom-

eters mounted at the the deburring tool tip. The resonance with the highest peak
amplitude will determine the maximum amplitude of the desired edge roughness.

3.4.2 Static Stiffness

The sensors used for the measurement of the ADACS dynamic response perfor-

mance are not capable of measuring the displacement of the tool holder tip, in re-

sponse to dynamic forces at very low frequencies, typically below 1 Hz. For this rea-

son a separate static stiffness test is necessary. During this test the tip of the tool is

pushed through a load-cell and the resulting forces and displacement is monitored.

3.4.3 Continuous Path Off-line Programming Performance

The actual deburring operation involves the continuous movement of the tool

along the edges of the part. The position and orientation of the edges is provided, in

the ideal case, by off-line programming. The objective of this test is to evaluate the

ability of the robot and the deburring tool holder to follow these edges as closely as

possible. To perform this test a laser tracker interferometer is used to monitor the

three dimensional space position of the tip of the tool. At the beginning of the test,

the transformation between the laser tracker coordinate frame and the robot base

frame is determined, then the robot arm is commanded to move the tip of the tool

through various trajectories, characteristic of robot deburring, at orientations dictat-

ed by the assumed part geometry. The trajectory is followed ten times as specified by
the relevant standards of the ISO and RIA/ANSI committees. The commanded and
achieved trajectories are compared to determine performance figures of merit like

accuracy, repeatability, cornering deviations, etc.

4 NIST-SUPPORTED NGC-RELATED ACTIVITIES

This section outlines activities supported with NIST internal funding and funds

from other sponsors that are related to the NGC program. These activities are in-

cluded here to show the degree of interest at NIST in the success of the NGC pro-

gram and related efforts.

4.1 RCS Methodology

In order to address the need for developing NGC/RCS systems engineering

guidelines, we have initiated an RCS Methodology project within the Robot
Systems Division. Our long term objective is to produce an RCS Intelligent Systems
Engineering Handbook (or text book) over the next several years. This Handbook
will provide detailed procedures, design examples, and engineering tradeoff discus-

sions, to guide systems engineers in designing NGC/RCS compliant control systems.

The most difficult part of this process is arriving at a consensus among our own re-
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searchers as to which of the engineering practices we currently use are generic to

broad classes of applications projects and which are more application specific. We
also are trying to identify which practices are driven by the technologies we current-

ly use in implementation and which practices are technology and implementation

independent and therefore less likely to change over time. Our second goal is to

verify our guidelines in our own laboratory by applying the guidelines we develop

to on-going projects within our division and by testing our hypotheses using test

problems suitable for inclusion in the RCS Handbook.
To date John Michaloski has produced a preliminary draft of the RCS

Methodology document. Work has begun on identifying the tenets of the RCS
Methodology and in documenting the iterative procedures we use in designing RCS
compliant control systems designs. Techniques for converting Task Frame specifica-

tions into executable code are also under investigation. During this process a num-
ber of issues have surfaced which need to be addressed through further research and
experimentation. These issues have been captured in a data base with the intent of

systematically addressing each issue during the course of our methodology project,

and will be published in the "Handbook for Real-Time Intelligent System Design."

During this past summer. Dr. Alex Meystel of Drexel University was a guest sci-

entist at NIST working with the Robot Systems Division. He was interested in

studying the NIST RCS systems development approach and comparing it to his own
hierarchically nested control systems approach, as well as other approaches found in

the literature. He also expressed an interest in developing a course on how to apply

the NIST RCS method. Dr. Meystel chaired a series of fact finding sessions at MST
which took the form of design review meetings for three of our on-going RCS appli-

cations projects: the ADACS project, the Army-sponsored Robotics Testbed (RT) pro-

ject and the NASA-sponsored Flight Telerobot Servicer (FTS) NASREM project.

These meetings were held on August 16 through 23 and August 26, 1991, respective-

ly. Each of the project teams were asked to document their current designs using an
initial Task Frame format and to review their design process and the rational for

their particular design decisions. The purpose of these meetings was to make a first

attempt at understanding which design procedures and decisions appear to be gener-

ic across RCS applications and which are application specific. Another purpose was
to help refine a practical Task Frame format by studying the lessons learned in at-

tempting to document three very different RCS applications using a single prede-

fined Task Frame format.

4.2 CASE Tools

In a related effort, Rick Norcross developed a prototype documentation tool

using Macintosh HyperCard software as the host environment. This tool allows the

designer to document an NGC/RCS design by naming software modules and assign-

ing them to specific levels within the RCS hierarchy using a Task Frame format.

The inputs and outputs of each module can then be defined including task com-
mands received from the next higher level and task commands sent to subordinate

modules at the next lower level in the hierarchy. Test code to simulate the execu-

tion of the hierarchy can also be entered enabling the generation of execution timing

diagrams that resemble a musical score. These kinds of tools will be needed in order
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to specify the specific World Model data structures any particular application will

need to support the task execution hierarchy.

Part of the RCS Methodology development effort has involved evaluating select-

ed Computer Aided Software Engineering (CASE) tools. John Michaloski visited

CIMFLEX Teknowledge on January 10 and 11, 1991 to discuss the possibility of using

their tool (ABE and ABE-RT) for this purpose. Arrangements were made to install a

copy of the tool at NIST in order to test its compatibility with NIST's RCS systems

engineering approach.

The Robot Systems Division has been working this year with Advanced
Research and Technology (ATR) of Laurel Maryland, on two other ongoing RCS au-

tomation projects: a DARPA submarine automation project, and a coal mining ma-
chine automation project sponsored by the Bureau of Mines. ATR has been invest-

ing IRAD funds to develop an RCS documentation tool to support the design and
development of these two and other real-time control systems projects they have
undertaken, using the RCS systems engineering approach. Their tool, which cur-

rently runs on a Macintosh computer, shows great promise. We are currently dis-

cussing a non-disclosure agreement with ATR which will allow us to use the tool at

NIST as a beta test site.

4.3 PDES/STEP Activities

Dr. Tom Kramer has begun work on using PDES/STEP data representations in

the NGC project. Geometric representations required will include part shapes (for

workpieces, designs, and fixtures), material removal volumes, and chamfered-edges.

Process plan representations will also be required. PDES/STEP boundary representa-

tions are expected to be adequate for part shapes. Experimental use of PDES/STEP B-

splines for part and edge representations has begun.

In order to use a high-level, application-independent process planning language

with NGC, it will be necessary to be able to merge such a language with low-level ap-

plication-dependent suites of task and resource descriptions. EXPRESS, the official

PDES/STEP information modeling language, does not make it easy to perform the

needed mergers. A paper pointing out the problem and proposing changes to EX-
PRESS to solve the problem was written by Tom Kramer. The draft paper.

Templates: A Needed but Missing Information Modeling Capability, is being circu-

lated for comment.
Dr. Kramer has also written EXPRESS schemas for the ADACS workstation. One

schema describes four levels of the ADACS control system (Task, E-Move, Primitive,

and Servo). A second schema is for an ALPS representation of ADACS process

plans. A third schema describes the geometry of the parts to be processed in the

ADACS workstation. A fourth schema describes the topology of those parts. A copy
of these EXPRESS schemas is included in Appendix F.

4.4 NCMS Next Generation Inspection Program

Jim Albus has been working with an NCMS Consortium to lay out plans for the

development of an NGC compliant Next Generation Inspection System (an NGC
controller for a coordinate measuring machine).
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4.5 AMRF Automation Open House

A demonstration of the ADACS workstation featuring the Air Force NGC pro-

gram involvement was prepared and presented at the NIST annual week-long
AMRF Automation Open House. Demonstrations were conducted throughout the

week of November 18^. Fred Proctor, Nicholas Tarnoff and Adam Jacoff contributed

to this effort.

4.6 Intelligent Control System Architecture Workshops

Rick Quintero organized two control system architecture workshops this year.

Working with the DOD Unmanned Ground Vehicles Project Office and the Army
Human Engineering Laboratory the Second Workshop on Architectures for Real-

Time Intelligent Control of Unmanned Vehicle Systems was held on January 10 and

11, 1991 in Aberdeen Maryland. Working with DOE the Second DOE/NIST
Workshop on Common Architectures for Robotic Systems was held in Seattle,

Washington on January 15 through 17, 1991. Both of these workshops explored

many of the issues of how to define a reference model architecture for their respec-

tive problem domains which could be used as a basis for a standard systems engi-

neering approach very similar to the NGC SOSAS approach.

5 PLANNED FUTURE ACTIVITIES

5.1 NGC Tasks 4-7 Demonstration Testbeds and Low End Controller

We are currently discussing with MMC and the Air Force plans to become an in-

volved participant in the NGC Task 4 through 7 demonstration implementations

and possibly the Low-End Controller effort. Negotiations between MMC, NIST and
the Air Force will be taking place in October and November regarding the specific

details of the NIST role.

NIST is proposing to work with Martin Marietta in support of their requirement

for an off-site testbed for Tasks 4 through 7 of the NGC program. Our work for Tasks

4 and 5 will include defining the interfaces to a machine tool controller, allowing

real-time sensor data from an external source to be used to modify cutter trajectories

to increase accuracy. Work will be performed simultaneously at NIST and at Martin

Marietta, in cooperation with two industry partners, demonstrating that the ap-

proach to improving machine tool accuracy is generic, and that the interfaces allow

code to be ported between disparate platforms.

NIST's work for Tasks 6 and 7, the NGC Robot and Workstation Controllers, will

likely take place in the Advanced Deburring and Chamfering System, and demon-
strate the interfaces required to control both a robot and an actively compliant cham-
fering tool. This work will build upon the interfaces, subsystem, and module defini-

tions resulting from our work with Tasks 4 and 5.
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5.2 AMRF Enhanced Machine Tool Controller

We anticipate funding a portion of the work required for Tasks 4 and 5 as part of

an AMRF program to develop an open-architecture machine tool controller. The
goal, which coincides with that of NGC Task 4, is to work with an industry partner

to develop a machine tool controller which presents well-documented and com-
plete interfaces at each level of control, and to demonstrate that these interfaces

allow for improved machine tool performance using real-time error compensation
based on sensor feedback. The NIST funding for this project is $500K for FY92 plus

about $500K worth of existing capital equipment.

5.3 Next Generation Inspection System (NGIS)

NIST intends to support the NGIS consortium with direct involvement in the

overall system architecture design; software development for planning, control, and
sensory processing; and sensor characterization. NIST will also construct a testbed

consisting of a coordinate measuring machine and computer hardware for a NGC
controller platform. NIST will contribute direct labor funding in the amount of

$200K plus about $1,200K worth of existing capital equipment to this activity.

-30-
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Outline for a Theory of Intelligence

James S. Albus

Abstract— Intelligence is defined as that which produces suc-

cessful behavior. Intelligence is assumed to result from natural

selection. A model is proposed that integrates knowledge from

research in both natural and artificial systems. The model con-

sists of a hierarchical system architecture wherein: I) control

bandwidth decreases about an order of magnitude at each higher

level, 2) perceptual resolution of spatial and temporal patterns

contracts about an order-of-magnitude at each higher level, 3)

goals expand in scope and planning horizons expand in space

and time about an order-of-magnitude at each higher level, and

4) models of the world and memories of events expand their

range in space and time by about an order-of-magnitude at

each higher level. At each level, functional modules perform

behavior generation (task decomposition planning and execution),

world modeling, sensory processing, and value judgment. Sensory

feedback control loops are closed at every level.

I. Introduction

Much is unknown about intelligence, and much

will remain beyond human comprehension for a very

long time. The fundamental nature of intelligence is only

dimly understood, and the elements of self consciousness,

perception, reason, emotion, and intuition are cloaked in

mystery that shrouds the human psyche and fades into the

religious. Even the definition of intelligence remains a subject

of controversy, and so must any theory that attempts to

explain what intelligence is, how it originated, or what are

the fundamental processes by which it functions.

Yet, much is known, both about the mechanisms and func-

tion of intelligence. The study of intelligent machines and the

neurosciences are both extremely active fields. Many millions

of dollars per year are now being spent in Europe, Japan,

and the United States on computer integrated manufacturing,

robotics, and intelligent machines for a wide variety of military

and commercial applications. Around the world, researchers in

the neurosciences are searching for the anatomical, physiolog-

ical, and chemical basis of behavior.

Neuroanatomy has produced extensive maps of the inter-

connecting pathways making up the structure of the brain.

Neurophysiology is demonstrating how neurons compute func-

tions and communicate information. Neuropharmacology is

discovering many of the transmitter substances that modify

value judgments, compute reward and punishment, activate

behavior, and produce learning. Psychophysics provides many

clues as to how individuals perceive objects, events, time,

and space, and how they reason about relationships between

themselves and the external world. Beh^vipj-al psychology
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adds information about mental development, emotions, and

behavior.

Research in learning automata, neural nets, and brain mod-

eling has given insight into learning and the similarities

and differences between neuronal and electronic comput-

ing processes. Computer science and artificial intelligence

is probing the nature of language and image understanding,

and has made significant progress in rule based reasoning,

planning, and problem solving. Game theory and operations

research have developed methods for decision making in

the face of uncertainty. Robotics and autonomous vehicle

research has produced advances in real-time sensory process-

ing, world modeling, navigation, trajectory generation, and

obstacle avoidance. Research in automated manufacturing and

process control has produced intelligent hierarchical controls,

distributed databases, representations of object geometry and

material properties, data driven task sequencing, network com-

munications, and multiprocessor operating systems. Modem
control theory has developed precise understanding of stability,

adaptability, and controllability under various conditions of

feedback and noise. Research in sonar, radar, and optical signal

processing has developed methods for fusing sensory input

from multiple sources, and assessing the believability of noisy

data.

Progress is rapid, and there exists an enormous and rapidly

growing literature in each of the previous fields. What is

lacking is a general theoretical model of intelligence that ties

all these separate areas of knowledge into a unified framework.

This paper is an attempt to formulate at least the broad outlines

of such a model.

The ultimate goal is a general theory of intelligence that

encompasses both biological and machine instantiations. The

model presented here incorporates knowledge gained from

many different sources and the discussion frequently shifts

back and forth between natural and artificial systems. For

example, the definition of intelligence in Section II addresses

both natural and artificial systems. Section III treats the origin

and function of intelligence from the standpoint of biological

evolution. In Section IV, botli natural and artificial system

elements are discussed. The system architecture described

in Sections V-VII derives almost entirely from research in

robotics and control theory for devices ranging from undersea

vehicles to automatic factories. Sections VIII-XI on behavior

generation. Sections XII and XIII on world modeling, and

Section XIV on sensory processing are elaborations of the

system architecture of Section V-VII. These sections all con-

tain numerous references to neurophysiological, psychological,

and psychophysical phenomena that support the model, and

frequent analogies are drawn between biological and artificial

0018-9472/91/0500-0473S01.00 © 1991 IEEE
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systems. The value judgments, described in Section XV, are

mostly based on the neurophysiology of the limbic system and

the psychology of emotion. Section XVI on neural computa-

tion and Section XVII on learning derive mostly from neural

net research.

The model is described in terms of definitions, axioms,

theorems, hypotheses, conjectures, and arguments in support

of them. Axioms are statements that are assumed to be true

without proof. Theorems are statements that the author feels

could be demonstrated true by existing logical methods or

empirical evidence. Few of the theorems are proven, but each

is followed by informal discussions that support the theorem

and suggest arguments upon which a formal proof might

be constructed. Hypotheses are statements that the author

feels probably could be demonstrated through future research.

Conjectures are statements that the author feels might be

demonstrable.

II. Definition Of Intelligence

In order to be useful in the quest for a general theory, the

definition of intelligence must not be limited to behavior that

is not understood. A useful definition of intelligence should

span a wide range of capabilities, from those that are well

understood, to those that are beyond comprehension. It should

include both biological and machine embodiments, and these

should span an intellectual range from that of an insect to

that of an Einstein, from that of a thermostat to that of the

most sophisticated computer system that could ever be built.

The definition of intelligence should, for example, include the

ability of a robot to spotweld an automobile body, the ability

of a bee to navigate in a field of wild flowers, a squirrel to

jump from limb to limb, a duck to land in a high wind, and

a swallow to work a field of insects. It should include what

enables a pair of blue jays to battle in the branches for a

nesting site, a pride of lions to pull down a wildebeest, a flock

of geese to migrate south in the winter. It should include what

enables a human to bake a cake, play the violin, read a book,

write a poem, fight a war, or invent a computer.

At a minimum, intelligence requires the ability to sense the

environment, to make decisions, and to control action. Higher

levels of intelligence may include the ability to recognize

objects and events, to represent knowledge in a world model,

and to reason about and plan for the future. In advanced forms,

intelligence provides the capacity to perceive and understand,

to choose wisely, and to act successfully under a large variety

of circumstances so as to survive, prosper, and reproduce in a

complex and often hostile environment.

From the viewpoint of control theory, intelligence might

be defined as a knowledgeable “helmsman of behavior”.

Intelligence is the integration of knowledge and feedback

into a sensory-interactive goal-directed control system that can

make plans, and generate effective, purposeful action directed

toward achieving them.

From the viewpoint of psychology, intelligence might be

defined as a behavioral strategy that gives each individual a

means for maximizing the likelihood of propagating its own

genes. Intelligence is the integration of perception, reason.

emotion, and behavior in a sensing, perceiving, knowing,

caring, planning, acting system that can succeed in achieving

its goals in the world.

For the purposes of this paper, intelligence will be defined

as the ability of a system to act appropriately in an uncertain

environment, where appropriate action is that which increases

the probability of success, and success is the achievement of

behavioral subgoals that support the system’s ultimate goal.

Both the criteria of success and the systems ultimate goal

are defined external to the intelligent system. For an intelligent

machine system, the goals and success criteria are typically

defined by designers, programmers, and operators. For intelli-

gent biological creatures, the ultimate goal is gene propagation,

and success criteria are defined by the processes of natural

selection.

Theorem: There are degrees, or levels, of intelligence,

and these are determined by; 1) the computational power

of the system’s brain (or computer), 2) the sophistication

of algorithms the system uses for sensory processing, world

modeling, behavior generating, value judgment, and global

communication, and 3) the information and values the system

has stored in its memory.

Intelligence can be observed to grow and evolve, both

through growth in computational power, and through accu-

mulation of knowledge of how to sense, decide, and act in a

complex and changing world. In artificial systems, growth in

computational power and accumulation of knowledge derives

mostly from human hardware engineers and software program-

mers. In natural systems, intelligence grows, over the lifetime

of an individual, through maturation and learning; and over

intervals spanning generations, through evolution.

Note that learning is not required in order to be intelligent,

only to become more intelligent as a result of experience.

Learning is defined as consolidating short-term memory into

long-term memory, and exhibiting altered behavior because of

what was remembered. In Section X, learning is discussed as

a mechanism for storing knowledge about the external world,

and for acquiring skills and knowledge of how to act. It is,

however, assumed that many creatures can exhibit intelligent

behavior using instinct, without having learned anything.

111. The Origin And Function Of Intelligence

Theorem: Natural intelligence, like the brain in which it

appears, is a result of the process of natural selection.

The brain is first and foremost a control system. Its primary

function is to produce successful goal-seeking behavior in find-

ing food, avoiding danger, competing for territory, attracting

sexual partners, and caring for offspring. All brains that ever

existed, even those of the tiniest insects, generate and control

behavior. Some brains produce only simple forms of behavior,

while others produce very complex behaviors. Only the most

recent and highly developed brains show any evidence of

abstract thought.

Theorem: For each individual, intelligence provides a mech-

anism for generating biologically advantageous behavior.

Intelligence improves an individual’s ability to act effec-

tively and choose wisely between alternative behaviors. All
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else being equal, a more intelligent individual has many

advantages over less intelligent rivals in acquiring choice

territory, gaining access to food, and attracting more desirable

breeding partners. The intelligent use of aggression helps

to improve an individual’s position in the social dominance

hierarchy. Intelligent predation improves success in capturing

prey. Intelligent exploration improves success in hunting and

establishing territory. Intelligent use of stealth gives a predator

the advantage of surprise. Intelligent use of deception improves

the prey’s chances of escaping from danger.

Higher levels of intelligence produce capabilities in the

individual for thinking ahead, planning before acting, and

reasoning about the probable results of alternative actions.

These abilities give to the more intelligent individual a com-

petitive advantage over the less intelligent in the competition

for survival and gene propagation. Intellectual capacities and

behavioral skills that produce successful hunting and gathering

of food, acquisition and defense of territory, avoidance and

escape from danger, and bearing and raising offspring tend to

be passed on to succeeding generations. Intellectual capabili-

ties that produce less successful behaviors reduce the survival

probability of the brains that generate them. Competition

between individuals thus drives the evolution of intelligence

within a species.

Theorem: For groups of individuals, intelligence provides

a mechanism for cooperatively generating biologically advan-

tageous behavior.

The intellectual capacity to simply congregate into flocks,

herds, schools, and packs increases the number of sensors

watching for danger. The ability to communicate danger

signals improves the survival probability of all individuals

in the group. Communication is most advantageous to those

individuals who are the quickest and most discriminating

in the recognition of danger messages, and most effective

in responding with appropriate action. The intelligence to

cooperate in mutually beneficial activities such as hunting and

group defense increases the probability of gene propagation

for all members of the group.

All else being equal, the most intelligent individuals and

groups within a species will tend to occupy the best territory,

be the most successful in social competition, and have the

best chances for their offspring surviving. All else being equal,

more intelligent individuals and groups will win out in serious

competition with less intelligent individuals and groups.

Intelligence is, therefore, the product of continuous com-

petitive struggles for survival and gene propagation that has

taken place between billions of brains, over millions of years.

The results of those struggles have been determined in large

measure by the intelligence of the competitors.

A. Communication and Language

Definition: Communication is the transmission of informa-

tion between intelligent systems.

Definition: Language is the means by which information is

encoded for purposes of communication.

Language has three basic components: vocabulary, syntax,

and semantics. Vocabulary is the set of words in the language.

Words may be represented by symbols. Syntax, or grammar,

is the set of rules for generating strings of symbols that

form sentences. Semantics is the encoding of information into

meaningful patterns, or messages. Messages are sentences that

convey useful information.

Communication requires that information be: 1) encoded,

2) transmitted, 3) received, 4) decoded, and 5) understood.

Understanding implies that the information in the message has

been correctly decoded and incorporated into the world model

of the receiver.

Communication may be either intentional or unintentional.

Intentional communication occurs as the result of a sender

executing a task whose goal it is to alter the knowledge or be-

havior of the receiver to the benefit of the sender. Unintentional

communication occurs when a message is unintentionally sent,

or when an intended message is received and understood by

someone other than the intended receiver. Preventing an enemy

from receiving and understanding communication between

friendly agents can often be crucial to survival.

Communication and language are by no means unique to

human beings. Virtually all creatures, even insects, commu-

nicate in some way, and hence have some form of language.

For example, many insects transmit messages announcing their

identity and position. This may be done acoustically, by smell,

or by some visually detectable display. The goal may be to

attract a mate, or to facilitate recognition and/or location by

other members of a group. Species of lower intelligence, such

as insects, have very little information to communicate, and

hence have languages with only a few of what might be called

words, with little or no grammar. In many cases, language

vocabularies include motions and gestures (i.e., body or sign

language) as well as acoustic signals generated by variety of

mechanisms from stamping the feet, to snorts, squeals, chirps,

cries, and shouts.

Theorem: In any species, language evolves to support the

complexity of messages that can be generated by the intelli-

gence of that species.

Depending on its complexity, a language may be capable of

communicating many messages, or only a few. More intelli-

gent individuals have a larger vocabulary, and are quicker to

understand and act on the meaning of messages.

Theorem: To the receiver, the benefit, or value, of commu-

nication is roughly proportional to the product of the amount of

information contained in the message, multiplied by the ability

of the receiver to understand and act on that information,

multiplied by the importance of the act to survival and gene

propagation of the receiver. To the sender, the benefit is the

value of the receiver’s action to the sender, minus the danger

incurred by transmitting a message that may be intercepted by,

and give advantage to, an enemy.

Greater intelligence enhances both the individual’s and the

group’s ability to analyze the environment, to encode and

transmit information about it, to detect messages, to recognize

their significance, and act effectively on information received.

Greater intelligence produces more complex languages capable

of expressing more information, i.e., more messages with more

shades of meaning.

In social species, communication also provides the basis
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for societal organization. Communication of threats that warn

of aggression can help to establish the social dominance

hierarchy, and reduce the incidence of physical harm from

fights over food, territory, and sexual partners. Communication

of alarm signals indicate the presence of danger, and in some

cases, identify its type and location. Communication of pleas

for help enables group members to solicit assistance from one

another. Communication between members of a hunting pack

enable them to remain in formation while spread far apart, and

hence to hunt more effectively by cooperating as a team in the

tracking and killing of prey.

Among humans, primitive forms of communication include

facial expressions, cries, gestures, body language, and pan-

tomime. The human brain is, however, capable of generating

ideas of much greater complexity and subtlety than can be

expressed through cries and gestures. In order to transmit mes-

sages commensurate with the complexity of human thought,

human languages have evolved grammatical and semantic

rules capable of stringing words from vocabularies consisting

of thousands of entries into sentences that express ideas

and concepts with exquisitely subtle nuances of meaning. To

support this process, the human vocal apparatus has evolved

complex mechanisms for making a large variety of sounds.

B. Human Intelligence and Technology

Superior intelligence alone made man a successful hunter.

The intellectual capacity to make and use tools, weapons,

and spoken language made him the most successful of all

predators. In recent millennia, human levels of intelligence

have led to the use of fire, the domestication of animals,

the development of agriculture, the rise of civilization, the

invention of writing, the building of cities, the practice of

war, the emergence of science, and the growth of industry.

These capabilities have extremely high gene propagation value

for the individuals and societies that possess them relative to

those who do not. Intelligence has thus made modem civilized

humans the dominant species on the planet Earth.

For an individual human, superior intelligence is an asset in

competing for position in the social dominance hierarchy. It

conveys advantage for attracting and winning a desirable mate,

in raising a large, healthy, and prosperous family, and seeing to

it that one’s offspring are well provided for. In competition be-

tween human groups, more intelligent customs and traditions,

and more highly developed institutions and technology, lead to

the dominance of culture and growth of military and political

power. Less intelligent customs, traditions, and practices, and

less developed institutions and technology, lead to economic

and political decline and eventually to the demise of tribes,

nations, and civilizations.

IV. The Elements Of Intelligence

Theorem: There are four system elements of intelligence:

sensory processing, world modeling, behavior generation, and

value judgment. Input to, and output from, intelligent systems

are via sensors and actuators.

1)

Actuators: Output from an intelligent system is produced

by actuators that move, exert forces, and position arms.

legs, hands, and eyes. Actuators generate forces to point

sensors, excite transducers, move manipulators, handle tools,

steer and propel locomotion. An intelligent system may have

tens, hundreds, thousands, even millions of actuators, all of

which must be coordinated in order to perform tasks and

accomplish goals. Natural actuators are muscles and glands.

Machine actuators are motors, pistons, valves, solenoids, and

transducers.

2) Sensors: Input to an intelligent system is produced by

sensors, which may include visual brightness and color sen-

sors; tactile, force, torque, position detectors; velocity, vibra-

tion, acoustic, range, smell, taste, pressure, and temperature

measuring devices. Sensors may be used to monitor both

the state of the external world and the internal state of the

intelligent system itself. Sensors provide input to a sensory

processing system.

3) Sensory Processing: Perception takes place in a sensory

processing system element that compares sensory observations

with expectations generated by an internal world model.

Sensory processing algorithms integrate similarities and dif-

ferences between observations and expectations over time

and space so as to detect events and recognize features,

objects, and relationships in the world. Sensory input data

from a wide variety of sensors over extended periods of

time are fused into a consistent unified perception of the

state of the world. Sensory processing algorithms compute

distance, shape, orientation, surface characteristics, physical

and dynamical attributes of objects and regions of space.

Sensory processing may include recognition of speech and

interpretation of language and music.

4) World Model: The world model is the intelligent sys-

tem’s best estimate of the state of the world. The world model

includes a database of knowledge about the world, plus a

database management system that stores and retrieves infor-

mation. The world model also contains a simulation capability

that generates expectations and predictions. The world model

thus can provide answers to requests for information about

the present, past, and probable future states of the world. The

world model provides this information service to the behavior

generation system element, so that it can make intelligent

plans and behavioral choices, to the sensory processing system

element, in order for it to perform correlation, model matching,

and model based recognition of states, objects, and events, and

to the value judgment system element in order for it to compute

values such as cost, benefit, risk, uncertainty, importance,

attractiveness, etc. The world model is kept up-to-date by the

sensory processing system element.

5) Value Judgment: The value judgment system element

determines what is good and bad, rewarding and punishing,

important and trivial, certain and improbable. The value judg-

ment system evaluates both the observed state of the world

and the predicted results of hypothesized plans. It computes

costs, risks, and benefits both of observed situations and of

planned activities. It computes the probability of correctness

and assigns believability and uncertainty parameters to state

variables. It also assigns attractiveness, or repulsiveness to

objects, events, regions of space, and other creatures. The

value judgment system thus provides the basis for making
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decisions—for choosing one action as opposed to another,

or for pursuing one object and fleeing from another. Without

value judgments, any biological creature would soon be eaten

by others, and any artificially intelligent system would soon

be disabled by its own inappropriate actions.

6) Behavior Generation: Behavior results from a behavior

generating system element that selects goals, and plans and ex-

ecutes tasks. Tasks are recursively decomposed into subtasks,

and subtasks are sequenced so as to achieve goals. Goals are

selected and plans generated by a looping interaction between

behavior generation, world modeling, and value judgment

elements. The behavior generating system hypothesizes plans,

the world model predicts the results of those plans, and the

value judgment element evaluates those results. The behavior

generating system then selects the plans with the highest

evaluations for execution. The behavior generating system

element also monitors the execution of plans, and modifies

existing plans whenever the situation requires.

Each of the system elements of intelligence are reasonably

well understood. The phenomena of intelligence, however,

requires more than a set of disconnected elements. Intelligence

requires an interconnecting system architecture that enables

the various system elements to interact and communicate with

each other in intimate and sophisticated ways.

A system architecture is what partitions the system elements

of intelligence into computational modules, and interconnects

the modules in networks and hierarchies. It is what enables the

behavior generation elements to direct sensors, and to focus

sensory processing algorithms on objects and events worthy

of attention, ignoring things that are not important to current

goals and task priorities. It is what enables the world model

to answer queries from behavior generating modules, and

make predictions and receive updates from sensory processing

modules. It is what communicates the value state-variables that

describe the success of behavior and the desirability of states

of the world from the value judgment element to the goal

selection subsystem.

V. A Proposed Architecture For Intelligent Systems

A number of system architectures for intelligent machine

systems have been conceived, and a few implemented. [1]-[15]

The architecture for intelligent systems that will be proposed

here is largely based on the real-time control system (RCS) that

has been implemented in a number of versions over the past 13

years at the National Institute for Standards and Technology

(NIST, formerly NBS). RCS was first implemented by Barbera

for laboratory robotics in the mid 1970’s [7] and adapted by

Albus, Barbera, and others for manufacturing control in the

NIST Automated Manufacturing Research Facility (AMRF)
during the early 1980’s [11], [12]. Since 1986, RCS has been

implemented for a number of additional applications, including

the NBS/DARPA Multiple Autonomous Undersea Vehicle

(MAUV) project [13], the Army Field Material Handling

Robot, and the Army TMAP and TEAM semiautonomous land

vehicle projects. RCS also forms the basis of the NASA/NBS
Standard Reference Model Telerobot Control System Archi-

tecture (NASREM) being used on the space station Flight

Situation — Planning and
Assessment ] Execution

Fig. 1. Elements of intelligence and the functional relationships

between them

Telerobotic Servicer [14] and the Air Force Next Generation

Controller.

The proposed system architecture organizes the elements of

intelligence so as to create the functional relationships and

information flow shown in Fig. 1. In all intelligent systems,

a sensory processing system processes sensory information to

acquire and maintain an internal model of the external world.

In all systems, a behavior generating system controls actuators

so as to pursue behavioral goals in the context of the perceived

world model. In systems of higher intelligence, the behavior

generating system element may interact with the world model

and value judgment system to reason about space and time,

geometry and dynamics, and to formulate or select plans based

on values such as cost, risk, utility, and goal priorities. The

sensory processing system element may interact with the world

model and value judgment system to assign values to perceived

entities, events, and situations.

The proposed system architecture replicates and distributes

the relationships shown in Fig. 1 over a hierarchical computing

structure with the logical and temporal properties illustrated

in Fig. 2. On the left is an organizational hierarchy wherein

computational nodes are arranged in layers like command
posts in a military organization. Each node in the organiza-

tional hierarchy contains four types of computing modules:

behavior generating (BG), world modeling (WM), sensory

processing (SP), and value judgment (VJ) modules. Each

chain of command in the organizational hierarchy, from each

actuator and each sensor to the highest level of control, can

be represented by a computational hierarchy, such as is shown

in the center of Fig. 2.

At each level, the nodes, and computing modules within

the nodes, are richly interconnected to each other by a com-

munications system. Within each computational node, the

communication system provides intermodule communications
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Fig. 2. Relationships in hierarchical control systems. On the left is an organizational hierarchy consisting of a tree of command
centers, each of which possesses one supervisor and one or more subordinates. In the center is a computational hierarchy consisting of

BG, WM, SP, and VJ modules. Each actuator and each sensors is serviced by a computational hierarchy. On the right is a behavioral

hierarchy consisting of trajectories through state-time-space. Commands at a each level can be represented by vectors, or points in

state-space. Sequences of commands and be represented as trajectories through state-time-space.

of the type shown in Fig. 1. Queries and task status are

communicated from BG modules to WM modules. Retrievals

of information are communicated from WM modules back to

the BG modules making the queries. Predicted sensory data is

communicated from WM modules to SP modules. Updates to

the world model are communicated from SP to WM modules.

Observed entities, events, and situations are communicated

from SP to VJ modules. Values assigned to the world model

representations of these entities, events, and situations are

communicated from VJ to WM modules. Hypothesized plans

are communicated from BG to WM modules. Results are

communicated from WM to VJ modules. Evaluations are

communicated from VJ modules back to the BG modules that

hypothesized the plans.

The communications system also communicates between

nodes at different levels. Commands are communicated down-

ward from supervisor BG modules in one level to subordinate

BG modules in the level below. Status reports are commu-

nicated back upward through the world model from lower

level subordinate BG modules to the upper level supervisor

BG modules from which commands were received. Observed

entities, events, and situations detected by SP modules at one

level are communicated upward to SP modules at a higher

level. Predicted attributes of entities, events, and situations

stored in the WM modules at a higher level are communi-

cated downward to lower level WM modules. Output from

the bottom level BG modules is communicated to actuator

drive mechanisms. Input to the bottom level SP modules is

communicated from sensors.

The communications system can be implemented in a va-

riety of ways. In a biological brain, communication is mostly

via neuronal axon pathways, although some messages are

communicated by hormones carried in the bloodstream. In

artificial systems, the physical implementation of communica-

tions functions may be a computer bus, a local area network,

a common memory, a message passing system, or some

combination thereof. In either biological or artificial systems,

the communications system may include the functionality

of a communications processor, a file server, a database

management system, a question answering system, or an

indirect addressing or list processing engine. In the system

architecture proposed here, the input/output relationships of the

communications system produce the effect of a virtual global

memory, or blackboard system [15].

The input command string to each of the BG modules

at each level generates a trajectory through state-space as

a function of time. The set of all command strings create

a behavioral hierarchy, as shown on the right of Fig. 2.

Actuator output trajectories (not shown in Fig. 2) correspond

to observable output behavior. All the other trajectories in the

behavioral hierarchy constitute the deep structure of behavior

[16].

VI. Hierarchical Versus Horizontal

Fig. 3 shows the organizational hierarchy in more detail,

and illustrates both the hierarchical and horizontal relation-

ships involved in the proposed architecture. The architecture

is hierarchical in that commands and status feedback flow

hierarchically up and down a behavior generating chain of

command. The architecture is also hierarchical in that sensory

processing and world modeling functions have hierarchical

levels of temporal and spatial aggregation.

TTie architecture is horizontal in that data is shared hori-

zontally between heterogeneous modules at the same level.

At each hierarchical level, the architecture is horizontally

interconnected by wide-bandwidth communication pathways

between BG, WM, SP, and VJ modules in the same node,
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Surfaces.

Words

Fig. 3. An organization of processing nodes such that the BG modules form

a command tree. On the right are examples or the functional characteristic

of the BG modules at each level. On the left are examples of the type of

visual and acoustical entities recognized by the SP modules at each level. In

the center of level 3 are the type of subsystems represented by processing

nodes at level 3.

and between nodes at the same level, especially within the

same command subtree. The horizontal flow of information

is most voluminous within a single node, less so between

related nodes in the same command subtree, and relatively low

bandwidth between computing modules in separate command

subtrees. Communications bandwidth is indicated in Fig. 3 by

the relative thickness of the horizontal connections.

The volume of information flowing horizontally within a

subtree may be orders of magnitude larger than the amount

flowing vertically in the command chain. The volume of in-

formation flowing vertically in the sensory processing system

can also be very high, especially in the vision system.

The specific configuration of the command tree is task

dependent, and therefore not necessarily stationary in time.

Fig. 3 illustrates only one possible configuration that may

exist at a single point in time. During operation, relationships

between modules within and between layers of the hierarchy

may be reconfigured in order to accomplish different goals, pri-

orities, and task requirements. This means that any particular

computational node, with its BG, WM, SP, and VJ modules,

may belong to one subsystem at one time and a different

subsystem a very short time later. For example, the mouth may

be part of the manipulation subsystem (while eating) and the

communication subsystem (while speaking). Similarly, an arm

may be part of the manipulation subsystem (while grasping)

and part of the locomotion subsystem (while swimming or

climbing).

In the biological brain, command tree reconfiguration can

be implemented through multiple axon pathways that exist,

but are not always activated, between BG modules at dif-

ferent hierarchical levels. These multiple pathways define a

layered graph, or lattice, of nodes and directed arcs, such as

shown in Fig. 4. They enable each BG module to receive

input messages and parameters from several different sources.

Fig. 4. Each layer of the system architecture contains a number of nodes,

each of which contains BG. WM. SP. and VJ modules. The nodes are

interconnected as a layered graph, or lattice, through the communication

system. Note that the nodes are richly but not fully, interconnected. Outputs

from the bottom layer BG modules drive actuators. Inputs to the bottom

layer SP modules convey data from sensors. During operation, goal driven

communication path selection mechanisms configure this lattice structure into

the organization tree shown in Fig. 3.

During operation, goal driven switching mechanisms in the BG
modules (discussed in Section X) assess priorities, negotiate

for resources, and coordinate task activities so as to select

among the possible communication paths of Fig. 4. As a

result, each BG module accepts task commands from only

one supervisor at a time, and hence the BG modules form a

command tree at every instant in time.

The SP modules are also organized hierarchically, but as

a layered graph, not a tree. At each higher level, sensory

information is processed into increasingly higher levels of

abstraction, but the sensory processing pathways may branch

and merge in many different ways.

VII. Hierarchical Levels

Levels in the behavior generating hierarchy are defined by

temporal and spatial decomposition of goals and tasks into

levels of resolution. Temporal resolution is manifested in terms

of loop bandwidth, sampling rate, and state-change intervals.

Temporal span is measured by the length of historical traces

and planning horizons. Spatial resolution is manifested in the

branching of the command tree and the resolution of maps.

Spatial span is measured by the span of control and the range

of maps.

Levels in the sensory processing hierarchy are defined by

temporal and spatial integration of sensory data into levels of

aggregation. Spatial aggregation is best illustrated by visual
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images. Temporal aggregation is best illustrated by acoustic

parameters such as phase, pitch, phonemes, words, sentences,

rhythm, beat, and melody.

Levels in the world model hierarchy are defined by temporal

resolution of events, spatial resolution of maps, and by parent-

child relationships between entities in symbolic data structures.

These are defined by the needs of both SP and BG modules

at the various levels.

Theorem: In a hierarchically structured goal-driven, sensory-

interactive, intelligent control system architecture:

1) control bandwidth decreases about an order of magni-

tude at each higher level,

2) perceptual resolution of spatial and temporal patterns

decreases about an order-of-magnitude at each higher

level,

3) goals expand in scope and planning horizons expand

in space and time about an order-of-magnitude at each

higher level, and

4) models of the world and memories of events decrease

in resolution and expand in spatial and temporal range

by about an order-of-magnitude at each higher level.

It is well known from control theory that hierarchically

nested servo loops tend to suffer instability unless the band-

width of the control loops differ by about an order of mag-

nitude. This suggests, perhaps even requires, condition 1).

Numerous theoretical and experimental studies support the

concept of hierarchical planning and perceptual “chunking”

for both temporal and spatial entities [17], [18], These support

conditions 2), 3), and 4).

In elaboration of the aforementioned theorem, we can con-

struct a timing diagram, as shown in Fig. 5. The range of the

time scale increases, and its resolution decreases, exponentially

by about an order of magnitude at each higher level. Hence the

planning horizon and event summary interval increases, and

the loop bandwidth and frequency of subgoal events decreases,

exponentially at each higher level. The seven hierarchical

levels in Fig. 5 span a range of time intervals from three

milliseconds to one day. Three milliseconds was arbitrarily

chosen as the shortest servo update rate because that is

adequate to reproduce the highest bandwidth reflex arc in the

human body. One day was arbitrarily chosen as the longest

historical-memory/planning-horizon to be considered. Shorter

time intervals could be handled by adding another layer at the

bottom. Longer time intervals could be treated by adding layers

at the top, or by increasing the difference in loop bandwidths

and sensory chunking intervals between levels.

The origin of the time axis in Fig. 5 is the present, i.e.,

t = 0. Future plans lie to the right of f = 0, past history to

the left. The open triangles in the right half-plane represent

task goals in a future plan. The filled triangles in the left

half-plane represent recognized task-completion events in a

past history. At each level there is a planning horizon and a

historical event summary interval. The heavy crosshatching on

the right shows the planning horizon for the current task. The

light shading on the rigfit indicates the planning horizon for

the anticipated next task, The heavy crosshatching on the left

shows the event summary interval for the current task. The

HISTORICAL 1 FUTURE
TRACES

I

PLANS

Fig. 5. Timing diagram illustrating the temporal flow of activity in the task

decomfKJsition and sensory processing systems. At the world level, high-level

sensory events and circadian rhythms react with habits and daily routines to

generate a plan for the day. Each elements of that plan is decomposed through

the remaining six levels of task decomposition into action.

light shading on the left shows the event summary interval for

the immediately previous task.

Fig. 5 suggests a duality between the behavior generation

and the sensory processing hierarchies. At each hierarchical

level, planner modules decompose task commands into strings

of planned subtasks for execution. At each level, strings of

sensed events are summarized, integrated, and “chunked” into

single events at the next higher level.

Planning implies an ability to predict future states of the

world. Prediction algorithms based on Fourier transforms or

Kalman filters typically use recent historical data to compute

parameters for extrapolating into the future. Predictions made

by such methods are typically not reliable for periods longer

than the historical interval over which the parameters were

computed. Thus at each level, planning horizons extend into

the future only about as far, and with about the same level of

detail, as historical traces reach into the past.

Predicting the future state of the world often depends on

assumptions as to what actions are going to be taken and what

reactions are to be expected from the environment, including

what actions may be taken by other intelligent agents. Planning

of this type requires search over the space of possible future

actions and probable reactions. Search-based planning takes

place via a looping interaction between the BG, WM, and VJ

modules. This is described in more detail in the Section X
(

•

discussion on BG modules.

Planning complexity grows exponentially with the number
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Fig. 6. Three levels of real-time planning illustrating the shrinking planning

horizon and greater detail at successively lower levels of the hierarchy. At

the top level, a single task is decomposed into a set of four planned subtasks

for each of three subsystem. At each of the next two levels, the first task in

the plan of the first subsystems is further decomposed into four subtasks for

three subsystems at the next lower level.

of steps in the plan (i.e., the number of layers in the search

graph). If real-time planning is to succeed, any given planner

must operate in a limited search space. If there are too much

resolution in the time line, or in the space of possible actions,

the size of the search graph can easily become too large for

real-time response. One method of resolving this problem

is to use a multiplicity of planners in hierarchical layers

[14], [18] so that at each layer no planner needs to search

more than a given number (for example ten) steps deep in a

game graph, and at each level there are no more than (ten)

subsystem planners that need to simultaneously generate and

coordinate plans. These criteria give rise to hierarchical levels

with exponentially expanding spatial and temporal planning

horizons, and characteristic degrees of detail for each level.

The result of hierarchical spatiotemporal planning is illustrated

in Fig. 6. At each level, plans consist of at least one, and on

average 10, subtasks. The planners have a planning horizon

that extends about one and a half average input command
intervals into the future.

In a real-time system, plans must be regenerated periodically

to cope with changing and unforeseen conditions in the world.

Cyclic replanning may occur at periodic intervals. Emergency

replanning begins immediately upon the detection of an emer-

gency condition. Under full alert status, the cyclic replanning

interval should be about an order of magnitude less than

the planning horizon (or about equal to the expected output

subtask time duration). This requires that real-time planners

be able to search to the plaiming horizon about an order of

magnitude faster than real time. This is possible only if the

depth and resolution of search is limited through hierarchical

planning.

Plan executors at each level have responsibility for react-

ing to feedback every control cycle interval. Control cycle

intervals are inversely proportional to the control loop band-

width. Typically the control cycle interval is an order of

magnitude less than the expected output subtask duration.

If the feedback indicates the failure of a planned subtask,

the executor branches immediately (i.e., in one control cycle

interval) to a preplanned emergency subtask. The planner

simultaneously selects or generates an error recovery sequence

that is substituted for the former plan that failed. Plan executors

are also described in more detail in Section X.

When a task goal is achieved at time f = 0, it becomes a

task completion event in the historical trace. To the extent that

a historical trace is an exact duplicate of a former plan, there

were no surprises; i.e., the plan was followed, and every task

was accomplished as planned. To the extent that a historical

trace is different from the former plan, there were surprises.

The average size and frequency of surprises (i.e., differences

between plans and results) is a measure of effectiveness of a

planner.

At each level in the control hierarchy, the difference vector

between planned (i.e., predicted) commands and observed

events is an error signal, that can be used by executor

submodules for servo feedback control (i.e., error correction),

and by VJ modules for evaluating success and failure.

In the next eight sections, the system architecture out-

lined previously will be elaborated and the functionality of

the computational submodules for behavior generation, world

modeling, sensory processing, and value judgment will be

discussed.

VIII. Behavior Generation

Definition: Behavior is the result of executing a series of

tasks.

Definition: A task is a piece of work to be done, or an

activity to be performed.

Axiom: For any intelligent system, there exists a set of tasks

that the system knows how to do.

Each task in this set can be assigned a name. The task

vocabulary is the set of task names assigned to the set of tasks

the system is capable of performing. For creatures capable of

learning, the task vocabulary is not fixed in size. It can be

expanded through learning, training, or programming. It may

shrink from forgetting, or program deletion.

Typically, a task is performed by a one or more actors on

one or more objects. The performance of a task can usually

be described as an activity that begins with a start-event and

is directed toward a goal-event. This is illustrated in Fig. 7.

Definition: A goal is an event that successfully terminates

a task. A goal is the objective toward which task activity is

directed.

Definition: A task command is an instruction to perform

a named task. A task command may have the form:

DO <Taskname(parameters)> AFTER <Start Event> UNTIL

<Goal Event> Task knowledge is knowledge of how to

perform a task, including information as to what tools,

materials, time, resources, information, and conditions are

required, plus information as to what costs, benefits and risks

are expected.



482 IEEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS, VOL 21. NO. 3, MAY/JUNE 1991

TASK

Fig. 7. A task consists of an activity that typically begins with a start event

and is terminated by a goal event, A task may be decomposed into several

concurrent strings of subtasks that collectively achieve the goal event.

Task knowledge may be expressed implicitly in fixed cir-

cuitry, either in the neuronal connections and synaptic weights

of the brain, or in algorithms, software, and computing hard-

ware. Task knowledge may also be expressed explicitly in data

structures, either in the neuronal substrate or in a computer

memory.

Definition: A task frame is a data structure in which task

knowledge can be stored.

In systems where task knowledge is explicit, a task frame

[19] can be defined for each task in the task vocabulary. An

example of a task frame is:

TASKNAME
type

actor

action

object

goal

parameters

requirements

procedures

effects

name of the task

generic or specifi

agent performing the task

activity to be performed

thing to be acted upon

event that successfully terminates or renders the

task successful

priority

status (e.g. active, waiting, inactive)

timing requirements

source of task command
tools, time, resources, and materials needed to

perform the task

enabling conditions that must be satisfied to begin,

or continue, the task

disabling conditions that will prevent, or interrupt,

the task

information that may be required

a state-graph or state-table defining a plan for

executing the task

functions that may be called

algorithms that may be needed

expected results of task execution

expected costs, risks, benefits

estimated time to complete

Explicit representation of task knowledge in task frames has

a variety of uses. For example, task planners may use it for

generating hypothesized actions. The world model may use it

for predicting the results of hypothesized actions. The value

judgment system may use it for computing how important the

goal is and how many resources to expend in pursuing it. Plan

executors may use it for selecting what to do next.

Task knowledge is typically difficult to discover, but once

known, can be readily transferred to others. Task knowledge

may be acquired by trial and error learning, but more often it

is acquired from a teacher, or from written or programmed

instructions. For example, the common household task of

preparing a food dish is typically performed by following

a recipe. A recipe is an informal task frame for cooking.

Gourmet dishes rarely result from reasoning about possible

combinations of ingredients, still less from random trial and

error combinations of food stuffs. Exceptionally good recipes

often are closely guarded secrets that, once published, can

easily be understood and followed by others.

Making steel is a more complex task example. Steel making

took the human race many millennia to discover how to do.

However, once known, the recipe for making steel can be

implemented by persons of ordinary skill and intelligence.

In most cases, the ability to successfully accomplish com-

plex tasks is more dependent on the amount of task knowledge

stored in task frames (particularly in the procedure section)

than on the sophistication of planners in reasoning about tasks.

IX. Behavior Generation

Behavior generation is inherently a hierarchical process.

At each level of the behavior generation hierarchy, tasks are

decomposed into subtasks that become task commands to

the next lower level. At each level of a behavior generation

hierarchy there exists a task vocabulary and a corresponding

set of task frames. Each task frame contains a procedure state-

graph. Each node in the procedure state-graph must correspond

to a task name in the task vocabulary at the next lower level.

Behavior generation consists of both spatial and temporal

decomposition. Spatial decomposition partitions a task into

jobs to be performed by different subsystems. Spatial task

decomposition results in a tree structure, where each node

corresponds to a BG module, and each arc of the tree cor-

responds to a communication link in the chain of command

as illustrated in Fig. 3.

Temporal decomposition partitions each job into sequential

subtasks along the time line. The result is a set of subtasks,

all of which when accomplished, achieve the task goal, as

illustrated in Fig. 7.

In a plan involving concurrent job activity by different

subsystems, there may requirements for coordination, or mu-

tual constraints. For example, a start-event for a subtask

activity in one subsystem may depend on the goal-event for

a subtask activity in another subsystem. Some tasks may

require concurrent coordinated cooperative action by several

subsystems. Both planning and execution of subsystem plans

may thus need to be coordinated.

There may be several alternative ways to accomplish a task.

Alternative task or job decompositions can be represented by

an AND/OR graph in the procedure section of the task frame.

The decision as to which of several alternatives to choose is

made through a series of interactions between the BG, WM,
SP, and VJ modules. Each alternative may be analyzed by the

BG module hypothesizing it, WM predicting the result, and VJ
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Command from
liignor lovtl

TemportI

DecompooWon

Fig. 8. The job assignment JA module performs a spatial decomposition of

the task command into A’ subsystems. For each subsystem, a planner PL{j)

performs a temporal decomposition of its assigned job into subtasks. For each

subsystem, an executor EX{j) closes a real-time control loop that servos the

subtasks to the plan.

evaluating the result. The BG module then chooses the “best”

alternative as the plan to be executed.

X. BG Modules

In the control architecture defined in Fig. 3, each level of

the hierarchy contains one or more BG modules. At each level,

there is a BG module for each subsystem being controlled. The

function of the BG modules are to decompose task commands

into subtask commands.

Input to BG modules consists of commands and priorities

from BG modules at the next higher level, plus evaluations

from nearby VJ modules, plus information about past, present,

and predicted future states of the world from nearby WM
modules. Output from BG modules may consist of subtask

commands to BG modules at the next lower level, plus status

reports, plus “What Is?” and “What If?” queries to the WM
about the current and future states of the world.

Each BG module at each level consists of three sublevels

[9], [14] as shown in Fig. 8.

The Job Assignment Sublevel—JA Submodule: The JA sub-

module is responsible for spatial task decomposition. It par-

titions the input task command into N spatially distinct jobs

to be performed by N physically distinct subsystems, where

N is the number of subsystems currently assigned to the BG
module. The JA submodule many assign tools and allocate

physical resources (such as arms, hands, legs, sensors, tools,

and materials) to each of its subordinate subsystems for their

use in performing their assigned jobs. These assignments are

not necessarily static. For example, the job assignment sub-

module at the individual level may, at one moment, assign an

arm to the manipulation subsystem in response to a <usetool>

task command, and later, assign the same arm to the attention

subsystem in response to a <touch/feel> task command.

The job assignment submodule selects the coordinate sys-

tem in which the task decomposition at that level is to be

performed. In supervisory or telerobotic control systems such

as defined by NASREM [14], the JA submodule at each level

may also determine the amount and kind of input to accept

from a human operator.

The Planner Sublevel—PL(j) Submodules j=l, 2, . . .N: For

each of the N subsystems, there exists a planner submodule

PL{j). Each planner submodule is responsible for decompos-

ing the job assigned to its subsystem into a temporal sequence

of planned subtasks.

Planner submodules PL{j) may be implemented by case-

based planners that simply select partially or completely pre-

fabricated plans, scripts, or schema [20]-[22] from the proce-

dure sections of task frames. This may be done by evoking sit-

uation/action niles of the form, IF(case_x)/THEN(use_plan_y).

The planner submodules may complete partial plans by pro-

viding situation dependent parameters.

The range of behavior that can be generated by a library

of prefabricated plans at each hierarchical level, with each

plan containing a number of conditional branches and error

recovery routines, can be extremely large and complex. For

example, nature has provided biological creatures with an

extensive library of genetically prefabricated plans, called

instinct. For most species, case-based planning using libraries

of instinctive plans has proven adequate for survival and gene

propagation in a hostile natural environment.

Planner submodules may also be implemented by search-

based planners that search the space of possible actions. This

requires the evaluation of alternative hypothetical sequences

of subtasks, as illustrated in Fig. 9. Each planner PL{j)

hypothesizes some action or series of actions, the WM module

predicts the effects of those action(s), and the VJ module

computes the value of the resulting expected states of the

world, as depicted in Fig. 9(a). This results in a game (or

search) graph, as shown in 9(b). The path through the game

graph leading to the state with the best value becomes the plan

to be executed by EX (j). In either case-based or search-based

planning, the resulting plan may be represented by a state-

graph, as shown in Fig. 9(c). Plans may also be represented

by gradients, or other types of fields, on maps [23], or in

configuration space.

Job commands to each planner submodule may contain

constraints on time, or specify job-start and job-goal events.

A job assigned to one subsystem may also require synchro-

nization or coordination with other jobs assigned to different

subsystems. These constraints and coordination requirements

may be specified by, or derived from, the task frame. Each

planner PL{j) submodule is responsible for coordinating

its plan with plans generated by each of the other A" - 1

planners at the same level, and checking to determine if

there are mutually conflicting constraints. If conflicts are

found, constraint relaxation algorithms [24] may be applied,

or negotiations conducted between PL{j) planners, until a

solution is discovered. If no solution can be found, the planners

report failure to the job assignment submodule, and a new job

assignment may be tried, or failure may be reported to the

next higher level BG module.

The Executor Sublevel—EX(j) Submodules: There is an ex-

ecutor EX{j) for each planner PL{j). The executor sub-

modules are responsible for successfully executing the plan
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(a)

Fig. 9. Planning loop (a) produces a game graph (b). A trace in the game
graph from the start to a goal state is a plan that can be represented as a plan

graph (c). Nodes in the game graph correspond to edges in the plan graph,

and edges in the game graph correspond to nodes in the plan graph. Multiple

edges exiting nodes in the plan graph corresptond to conditional branches.

state-graphs generated by their respective planners. At each

tick of the state clock, each executor measures the difference

between the current world state and its current plan subgoal

state, and issues a subcommand designed to null the difference.

When the world model indicates that a subtask in the current

plan is successfully completed, the executor steps to the next

subtask in that plan. When all the subtasks in the current

plan are successfully executed, the executor steps to the first

subtask in the next plan. If the feedback indicates the failure

of a planned subtask, the executor branches immediately to a

preplanned emergency subtask. Its planner meanwhile begins

work selecting or generating a new plan that can be substi-

tuted for the former plan that failed. Output subcommands

produced by executors at level i become input commands to

job assignment submodules in BG modules at level i - \.

Planners PL{j) operate on the future. For each subsystem,

there is a planner that is responsible for providing a plan

that extends to the end of its planning horizon. Executors

EX{j) operate in the present. For each subsystem, there is an

executor that is responsible for monitoring the current (f = 0)

state of the world and executing the plan for its respective

subsystem. Each executor performs a READ-COMPUTE-
WRITE operation once each control cycle. At each level, each

executor submodule closes a reflex arc, or servo loop. Thus,

executor submodules at the various hierarchical levels form a

set of nested servo loops. Executor loop bandwidths decrease

on average about an order of magnitude at each higher level.

XI. The Behavior Generating Hierarchy

Task goals and task decomposition functions often have

characteristic spatial and temporal properties. For any task.

there exists a hierarchy of task vocabularies that can be

overlaid on the spatial/temporal hierarchy of Fig. 5.

For example:

Level 1 is where commands for coordinated velocities and

forces of body components (such as arms, hands, fingers, legs,

eyes, torso, and head) are decomposed into motor commands
to individual actuators. Feedback servos the position, velocity,

and force of individual actuators. In vertebrates, this is the

level of the motor neuron and stretch reflex.

Level 2 is where commands for maneuvers of body com-

ponents are decomposed into smooth coordinated dynamically

efficient trajectories. Feedback servos coordinated trajectory

motions. Tbis is the level of the spinal motor centers and the

cerebellum.

Level 3 is where commands to manipulation, locomotion,

and attention subsystems are decomposed into collision free

paths that avoid obstacles and singularities. Feedback servos

movements relative to surfaces in the world. This is the level

of the red nucleus, the substantia nigra, and the primary- motor

cortex.

Level 4 is where commands for an individual to perform

simple tasks on single objects are decomposed into coordi-

nated activity of body locomotion, manipulation, attention, and

communication subsystems. Feedback initiates and sequences

subsystem activity. This is the level of the basal ganglia and

pre-motor frontal cortex.

Level 5 is where commands for behavior of an intelligent

self individual relative to others in a small group are decom-

posed into interactions between the self and nearby objects or

agents. Feedback initiates and steers whole self task activity.

Behavior generating levels 5 and above are hypothesized to

reside in temporal, frontal, and limbic cortical areas.

Level 6 is where commands for behavior of the individual

relative to multiple groups are decomposed into small group

interactions. Feedback steers small group interactions.

Level 7 (arbitrarily the highest level) is where long range

goals are selected and plans are made for long range behavior

relative to the world as a whole. Feedback steers progress

toward long range goals.

The mapping of BG functionality onto levels one to four

defines the control functions necessary to control a single

intelligent individual in performing simple task goals. Func-

tionality at levels one through three is more or less fixed and

specific to each species of intelligent system [25]. At level

4 and above, the mapping becomes more task and situation

dependent. Levels 5 and above define the control functions

necessary to control the relationships of an individual relative

to others in groups, multiple groups, and the world as a whole.

There is good evidence that hierarchical layers develop in

the sensory-motor system, both in the individual brain as the

individual matures, and in the brains of an entire species as the

species evolves. It can be hypothesized that the maturation of

levels in humans gives rise to Piaget’s “stages of development”

[26].

Of course, the biological motor system is typically much

more complex than is suggested by the example model de-

scribed previously. In the brains of higher species there may

exist multiple hierarchies that overlap and interact with each
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Other in complicated ways. For example in primates, the

pyramidal cells of the primary motor cortex have outputs

to the motor neurons for direct control of fine manipulation

as well as the inferior olive for teaching behavioral skills

to the cerebellum [21]. There is also evidence for three

parallel behavior generating hierarchies that have developed

over three evolutionary eras [28]. Each BG module may thus

contain three or more competing influences: 1) the most basic

(IF it smells good, THEN eat it), 2) a more sophisticated

(WAIT until the “best” moment) where best is when success

probability is highest, and 3) a very sophisticated (WHAT are

the long range consequences of my contemplated action, and

what are all my options).

On the other hand, some motor systems may be less complex

than suggested previously. Not all species have the same

number of levels. Insects, for example, may have only two or

three levels, while adult humans may have more than seven. In

robots, the functionality required of each BG module depends

upon the complexity of the subsystem being controlled. For

example, one robot gripper may consist of a dexterous hand

with 15 to 20 force servoed degrees of freedom. Another

gripper may consist of two parallel jaws actuated by a single

pneumatic cylinder. In simple systems, some BG modules

(such as the Primitive level) may have no function (such

as dynamic trajectory computation) to perform. In this case,

the BG module will simply pass through unchanged input

commands (such as <Grasp>).

XII. The World Model

Definition: The world model is an intelligent system’s

internal representation of the external world. It is the system’s

best estimate of objective reality. A clear distinction between

an internal representation of the world that exists in the

mind, and the external world of reality, was first made in

the West by Schopenhauer over 100 years ago [29]. In the

East, it has been a central theme of Buddhism for millennia.

Today the concept of an internal world model is crucial

to an understanding of perception and cognition. The world

model provides the intelligent system with the information

necessary to reason about objects, space, and time. The world

model contains knowledge of things that are not directly and

immediately observable. It enables the system to integrate

noisy and intermittent sensory input from many different

sources into a single reliable representation of spatiotemporal

reality.

Knowledge in an intelligent system may be represented

either implicitly or explicitly. Implicit world knowledge may

be embedded in the control and sensory processing algorithms

and interconnections of a brain, or of a computer system.

Explicit world knowledge may be represented in either natural

or artificial systems by data in database structures such as

maps, lists, and semantic nets. Explicit world models require

computational modules capable of map transformations, indi-

rect addressing, and list processing. Computer hardware and

software techniques for implementing these types of functions

are well known. Neural mechanisms with such capabilities are

discussed in Section XVI.

Task
Planner

Task
Executor

Fig, 10. Functions performed by the WM module. 1) Update knowledge

database with prediction errors and recognized entities, 2) Predict sensory

data. 3) Answer “What is?” queries from task executor and return current

state of world. 4) Answer “What if?” queries from task planner and predict

results for evaluation.

A. WM Modules

The WM modules in each node of the organizational hi-

erarchy of Figs. 2 and 3 perform the functions illustrated in

Fig. 10.

1) WM modules maintain the knowledge database, keeping

it current and consistent. In this role, the WM modules

perform the functions of a database management system.

They update WM state estimates based on correlations

and differences between world model predictions and

sensory observations at each hierarchical level. The

WM modules enter newly recognized entities, states,

and events into the knowledge database, and delete

entities and states determined by the sensory processing

modules to no longer exist in the external world. The

WM modules also enter estimates, generated by the VJ

modules, of the reliability of world model state variables.

Believability or confidence factors are assigned to many

types of state variables.

2) WM modules generate predictions of expected sensory

input for use by the appropriate sensory processing

SP modules. In this role, a WM module performs the

functions of a signal generator, a graphics engine, or

state predictor, generating predictions that enable the

sensory processing system to perform correlation and

predictive filtering. WM predictions are based on the

state of the task and estimated states of the external

world. For example in vision, a WM module may use

the information in an object frame to generate real-time

predicted images that can be compared pixel by pixel,

or entity by entity, with observed images.

3) WM modules answer “What is?” questions asked by the

planners and executors in the corresponding level BG
modules. In this role, the WM modules perform the func-

tion of database query processors, question answering
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systems, or data servers. World model estimates of the

current state of the world are also used by BG module

planners as a starting point for planning. Current state

estimates are used by BG module executors for servoing

and branching on conditions.

4) WM modules answer “What if?” questions asked by the

planners in the corresponding level BG modules. In this

role, the WM modules perform the function of simula-

tion by generating expected status resulting from actions

hypothesized by the BG planners. Results predicted by

WM simulations are sent to value judgment VJ modules

for evaluation. For each BG hypothesized action, a WM
prediction is generated, and a VJ evaluation is returned

to the BG planner. This BG-WM-VJ loop enables BG
planners to select the sequence of hypothesized actions

producing the best evaluation as the plan to be executed.

Data structures for representing explicit knowledge are

defined to reside in a knowledge database that is hierarchically

structured and distributed such that there is a knowledge

database for each WM module in each node at every level

of the system hierarchy. The communication system provides

data transmission and switching services that make the WM
modules and the knowledge database behave like a global

virtual common memory in response to queries and updates

from the BG, SP, and VJ modules. The communication

interfaces with the WM modules in each node provides a

window into the knowledge database for each of the computing

modules in that node.

XIII. Knowledge Representation

The world model knowledge database contains both a priori

information that is available to the intelligent system before

action begins, and a posteriori knowledge that is gained

from sensing the environment as action proceeds. It contains

information about space, time, entities, events, and states of

the external world. The knowledge database also includes

information about the intelligent system itself, such as values

assigned to motives, drives, and priorities; values assigned to

goals, objects, and events; parameters embedded in kinematic

and dynamic models of the limbs and body; states of internal

pressure, temperature, clocks, and blood chemistry or fuel

level; plus the states of all of the processes currently executing

in each of the BG, SP, WM, and VJ modules.

Knowledge about space is represented in maps. Knowledge

about entities, events, and states is represented in lists, or

frames. Knowledge about the laws of physics, chemistry, op-

tics, and the rules of logic and mathematics are represented as

parameters in the WM functions that generate predictions and

simulate results of hypothetical actions. Physical knowledge

may be represented as algorithms, formulae, or as IFA^EN

rules of what happens under certain situations, such as when

things are pushed, thrown, dropped, handled, or burned.

The correctness and consistency of world model knowledge

is verified by sensory processing mechanisms that measure

differences between world model predictions and sensory

observations.

A. Geometrical Space

From psychophysical evidence Gibson [30] concludes that

the perception of geometrical space is primarily in terms of

“medium, substance, and the surfaces that separate them”.

Medium is the air, water, fog, smoke, or falling snow through

which the world is viewed. Substance is the material, such as

earth, rock, wood, metal, flesh, grass, clouds, or water, that

comprise the interior of objects. The surfaces that separate the

viewing medium from the viewed objects is what are observed

by the sensory system. The sensory input thus describes the

external physical world primarily in terms of surfaces.

Surfaces are thus selected as the fundamental element for

representing space in the proposed WM knowledge database.

Volumes are treated as regions between surfaces. Objects

are defined as circumscribed, often closed, surfaces. Lines,

points and vertices lie on, and may define surfaces. Spatial

relationships on surfaces are represented by maps.

B. Maps

Definition: A map is a two dimensional database that

defines a mesh or grid on a surface.

The surface represented by a map may be, but need not be,

flat. For example, a map may be defined on a surface that

is draped over, or even wrapped around, a three-dimensional

(3-D) volume.

Theorem: Maps can be used to describe the distribution of

entities in space.

It is always possible and often useful to project the physical

3-D world onto a 2-D surface defined by a map. For example,

most commonly used maps are produced by projecting the

world onto the 2-D surface of a flat sheet of paper, or the

surface of a globe. One great advantage of such a projection

is that it reduces the dimensionality of the world from three

to two. This produces an enormous saving in the amount

of memory required for a database representing space. The

saving may be as much as three orders of magnitude, or more,

depending on the resolution along the projected dimension.

1 ) Map Overlays: Most of the useful information lost in the

projection from 3-D space to a 2-D surface can be recovered

through the use of map overlays.

Definition: A map overlay is an assignment of values, or

parameters, to points on the map.

A map overlay can represent spatial relationships between

3-D objects. For example, an object overlay may indicate the

presence of buildings, roads, bridges, and landmarks at various

places on the map. Objects that appear smaller than a pixel on

a map can be represented as icons. Larger objects may be

represented by labeled regions that are projections of the 3-D

objects on the 2-D map. Objects appearing on the map overlay

may be cross referenced to an object frame database elsewhere

in the world model. Information about the 3-D geometry of

objects on the map may be represented in the object frame

database.

Map overlays can also indicate attributes associated with

points (or pixels) on the map. One of the most common map

overlays defines terrain elevation. A value of terrain elevation
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(z) overlaid at each {x.y) point on a world map produces a

topographic map.

range R to surface covered (from

egosphere origin)

A map can have any number of overlays. Map overlays

may indicate brightness, color, temperature, even “behind” or

head egosphere location az, el of egosphere ray to surface

covered

“in-front”. A brightness or color overlay may correspond to

a visual image. For example, when aerial photos or satellite

world map location X. y. z of map point on surface

covered

images are registered with map coordinates, they become

brightness or color map overlays.

world map location X. y. z of map point on surface

covered

Map overlays may indicate terrain type, or region names,

or can indicate values, such as cost or risk, associated with

linear feature pointer pointer to frame of line, edge, or

vertex covered by pixel

regions. Map overlays can indicate which points on the ground

are visible from a given location in space. Overlays may

surface feature pointer pointer to frame of surface

covered by pixel

also indicate contour lines and grid lines such as latitude and

longitude, or range and bearing.

object pointer pointer to frame of object covered

by pixel

Map overlays may be useful for a variety of functions.

For example, terrain elevation and other characteristics may

be useful for route planning in tasks of manipulation and

object map location X. Y. Z of surface covered in

object coordinates group pointer

pointer to group covered by pixel

locomotion. Object overlays can be useful for analyzing scenes

and recognizing objects and places.

A map typically represents the configuration of the world

at a single instant in time, i.e., a snapshot. Motion can be

represented by overlays of state variables such as velocity

or image flow vectors, or traces (i.e., trajectories) of entity

locations. Time may be represented explicitly by a numerical

parameter associated with each trajectory point, or implicitly

by causing trajectory points to fade, or be deleted, as time

passes.

Definition: A map pixel frame is a frame that contains

attributes and attribute-values attached to that map pixel.

Theorem: A set of map overlays are equivalent to a set of

map pixel frames.

Proof: If each map overlay defines a parameter value for

every map pixel, then the set of all overlay parameter values

for each map pixel defines a frame for that pixel. Conversely,

the frame for each pixel describes the region covered by that

pixel. The set of all pixel frames thus defines a set of map
overlays, one overlay for each attribute in the pixel frames.

Q.E.D.

For example, a pixel frame may describe the color, range,

and orientation of the surface covered by the pixel. It may
describe the name of (or pointer to) the entities to which the

surface covered by the pixel belongs. It may also contain the

location, or address, of the region covered by the pixel in

other coordinate systems.

In the case of a video image, a map pixel frame might have

the following form;

PIXEL_NAME

brightness

color

spatial brightness gradient

temporal brightness gradient

image flow direction

image flow rate

(AZ.EL) location index on map

(Sensor egosphere coordinates)

I

Ir.h.Ig

dl/dAZ. dl/dEL (sensor

egosphere coordinates)

dl/dt

B (velocity egosphere coordinates)

dAfdt (velocity egosphere

coordinates)

Indirect addressing through pixel frame pointers can allow

value state-variables assigned to objects or situations to be

inherited by map pixels. For example, value state-variables

such as attraction-repulsion, love-hate, fear-comfort assigned

to objects and map regions can also be assigned through

inheritance to individual map and egosphere pixels.

There is some experimental evidence to suggest that map

pixel frames exist in the mammalian visual system. For ex-

ample, neuron firing rates in visual cortex have been observed

to represent the values of attributes such as edge orientation,

edge and vertex type, and motion parameters such as velocity,

rotation, and flow field divergence. These firing rates are

observed to be registered with retinotopic brightness images

[31], [54].

C. Map Resolution

The resolution required for a world model map depends on

how the map is generated and how it is used. All overlays

need not have the same resolution. For predicting sensory

input, world model maps should have resolution comparable

to the resolution of the sensory system. For vision, map

resolution may be on the order of 64K to a million pixels. This

corresponds to image arrays of 256 x 256 pixels to 1000 x 1000

pixels respectively. For other sensory modalities, resolution

can be considerably less.

For planning, different levels of the control hierarchy require

maps of different scale. At higher levels, plans cover long

distances and times, and require maps of large area, but low

resolution. At lower levels, plans cover short distances and

times, and maps need to cover small areas with high resolution.

[18]

World model maps generated solely from symbolic data in

long term memory may have resolution on the order of a few

thousand pixels or less. For example, few humans can recall

from memory the relative spatial distribution of as many as

a hundred objects, even in familiar locations such as their

own homes. The long term spatial memory of an intelligent

creature typically consists of a finite number of relatively small

regions that may be widely separated in space; for example.
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one’s own home, the office, or school, the homes of friends

and relatives, etc. These known regions are typically connected

by linear pathways that contain at most a few hundred known

waypoints and branchpoints. The remainder of the world is

known little, or not at all. Unknown regions, which make up

the vast majority of the real world, occupy little or no space

in the world model.

The efficient storage of maps with extremely nonuniform

resolution can be accomplished in a computer database by

quadtrees [32], hash coding, or other sparse memory repre-

sentations [33]. Pathways between known areas can be eco-

nomically represented by graph structures either in neuronal

or electronic memories. Neural net input-space representa-

tions and transformations such as are embodied in a CMAC
[34], [35] give insight as to how nonuniformly dense spatial

information might be represented in the brain.

D. Maps and Egospheres

It is well known that neurons in the brain, particularly in

the cortex, are organized as 2-D arrays, or maps. It is also

known that conformal mappings of image arrays exist between

the retina, the lateral geniculate, the superior colliculus, and

several cortical visual areas. Similar mappings exist in the

auditory and tactile sensory systems. For every map, there

exists a coordinate system, and each map pixel has coordinate

values. On the sensor egosphere, pixel coordinates are defined

by the physical position of the pixel in the sensor array. The

position of each pixel in other map coordinate systems can be

defined either by neuronal interconnections, or by transform

parameters contained in each pixel’s frame.

There are three general types of map coordinate systems

that are important to an intelligent system: world coordinates,

object coordinates, and egospheres.

1 ) World Coordinates: World coordinate maps are typically

flat 2-D arrays that are projections of the surface of the earth

along the local vertical. World coordinates are often expressed

in a Cartesian frame, and referenced to a point in the world.

In most cases, the origin is an arbitrary point on the ground.

The 2 axis is defined by the vertical, and the x and y axes

define points on the horizon. For example, y may point North

and X East. TTie value of 2 is often set to zero at sea level.

World coordinates may also be referenced to a moving point

in the world. For example, the origin may be the self, or some

moving object in the world. In this case, stationary pixels on

the world map must be scrolled as the reference point moves.

There may be several world maps with different resolutions

and ranges. These will be discussed near the end of this

section.

2) Object Coordinates: Object coordinates are defined with

respect to features in an object. For example, the origin

might be defined as the center of gravity, with the coordinate

axes defined by axes of symmetry, faces, edges, vertices, or

skeletons [36]. There are a variety of surface representations

that have been suggested for representing object geometry.

Among these are generalized cylinders [37], [38], B-splines

[39], quadtrees [32], and aspect graphs [40]. Object coordinate

maps are typically 2-D arrays of points painted on the surfaces

of objects in the form of a grid or mesh. Other boundary

representation can usually be transformed into this form.

Object map overlays can indicate surface characteristics

such as texture, color, hardness, temperature, and type of

material. Overlays can be provided for edges, boundaries,

surface normal vectors, vertices, and pointers to object frames

containing center lines, centroids, moments, and axes of sym-

metry.

3)

Egospheres: An egosphere is a two-dimensional (2-D)

spherical Surface that is a map of the world as seen by an

observer at the center of the sphere. Visible points on regions

or objects in the world are projected on the egosphere wherever

the line of sight from a sensor at the center of the egosphere

to the points in the world intersect the surface of the sphere.

Egosphere coordinates thus are polar coordinates defined by

the self at the origin. As the self moves, the projection of the

world flows across the surface of the egosphere.

Just as the world map is a flat 2-D {x. y) array with multiple

overlays, so the egosphere is a spherical 2-D (AZ.EL)
array with multiple overlays. Egosphere overlays can attribute

brightness, color, range, image flow, texture, and other prop-

erties to regions and entities on the egosphere. Regions on the

egosphere can thus be segmented by attributes, and egosphere

points with the same attribute value may be connected by

contour lines. Egosphere overlays may also indicate the trace,

or history, of brightness values or entity positions over some

time interval. Objects may be represented on the egosphere

by icons, and each object may have in its database frame a

trace, or trajectory, of positions on the egosphere over some

time interval.

E. Map Transformations

Theorem: If surfaces in real world space can be covered by

an array (or map) of points in a coordinate system defined

in the world, and the surface of a WM egosphere is also

represented as an array of points, then there exists a function

G that transforms each point on the real world map into a point

on the WM egosphere, and a function G' that transforms each

point on the WM egosphere for which range is known into a

point on the real world map.

Proof: Fig. 11 shows the 3-D relationship between an

egosphere and world map coordinates. For every point {x.y,z)

in world coordinates, there is a point {AZ.EL.R) in ego

centered coordinates that can be computed by the 3 x 3 matrix

function G

{AZ.EL.R)^ = G(x.y.zf

There, of course, may be more than one point in the world map

that gives the same {AZ. EL) values on the egosphere. Only

the {AZ.EL) with the smallest value of R will be visible

to an observer at the center of the egosphere. The deletion

of egosphere pixels with R larger than the smallest for each

value of {AZ, EL) corresponds to the hidden surface removal

problem common in computer graphics.

For each egosphere pixel where R is known, {x. y. z) can

be computed from {AZ, EL, R) by the function G'

{x,y,z)^ = G' {AZ.EL.R)'^
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Egosphere

Fig. 11. Geometric relationship between world map and egosphere

coordinates.

Any point in the world topological map can thus be projected

onto the egosphere (and vice versa when R is known).

Projections from the egosphere to the world map will leave

blank those map pixels that cannot be observed from the center

of the egosphere. Q.E.D.

There are 2 x 2 transformations of the form

{AZ.ELf = F{az.elf

and

{az,elf = F'{AZ.ELf

that can relate any map point (AZ.EL) on one egosphere to

a map point (az,el) on another egosphere of the same origin.

The radius R to any egosphere pixel is unchanged by the

F and F' transformations between egosphere representations

with the same origin.

As ego motion occurs (i.e., as the self object moves through

the world), the egosphere moves relative to world coordinates,

and points on the egocentric maps flow across their surfaces.

Ego motion may involve translation, or rotation, or both; in

a stationary world, or a world containing moving objects. If

egomotion is known, range to all stationary points in the world

can be computed from observed image flow; and once range to

any stationary point in the world is known, its pixel motion on

the egosphere can be predicted from knowledge of egomotion.

For moving points, prediction of pixel motion on the egosphere

requires additional knowledge of object motion.

F. Egosphere Coordinate Systems

The proposed world model contains four different types of

egosphere coordinates:

]) Sensor Egosphere Coordinates: The sensor egosphere is

defined by the sensor position and orientation, and moves as

the sensor moves. For vision, the sensor egosphere is the

coordinate system of the retina. The sensor egosphere has

coordinates of azimuth {AZ) and elevation {EL) fixed in the

sensor system (such as an eye or a TV camera), as shown

in Fig. 12. For a narrow field of view, rows and columns

{x.z) in a flat camera image array correspond quite closely

to azimuth and elevation {AZ,EL) on the sensor egosphere.

However, for a wide field of view, the egosphere and flat

image array representations have widely different geometries.

TTie flat image {x,z) representation becomes highly elongated

for a wide field of view, going to infinity at plus and minus

90 degrees. The egosphere representation, in contrast, is well

Sensor
r*dd of

View

Fig. 12. Sensor egosphere coordinates. Azimuth (AZ) is measured clockwise

from the sensor y-axis in the i-y plane. Elevation (EL) is measured up and

down (plus and minus) from the i-y plane.

behaved over the entire sphere (except for singularities at the

egosphere poles).

The sensor egosphere representation is useful for the anal-

ysis of wide angle vision such as occurs in the eyes of most

biological creatures. For example, most insects and fish, many

birds, and most prey animals such as rabbits have eyes with

fields of view up to 180 degrees. Such eyes are often positioned

on opposite sides of the head so as to provide almost 360

degree visual coverage. The sensor egosphere representation

provides a tractable coordinate frame in which this type of

vision can be analyzed.

2) Head Egosphere Coordinates: The head egosphere has

{AZ.EL) coordinates measured in a reference frame fixed

in the head (or sensor platform). The head egosphere repre-

sentation is well suited for fusing sensory data from multiple

sensors, each of which has its own coordinate system. Vision

data from multiple eyes or cameras can be overlaid and

registered in order to compute range from stereo. Directional

and range data from acoustic and sonar sensors can be overlaid

on vision data. Data derived from different sensors, or from

multiple readings of the same sensor, can be overlaid on the

head egosphere to build up a single image of multidimensional

reality.

Pixel data in sensor egosphere coordinates can be trans-

formed into the head egosphere by knowledge of the position

and orientation of the sensor relative to the head. For example,

the position of each eye in the head is fixed and the orientation

of each eye relative to the head is known from stretch sensors

in the ocular muscles. The position of tactile sensors relative

to the head is known from proprioceptive sensors in the neck,

torso, and limbs.

Hypothesis: Neuronal maps on the tectum (or superior

colliculus), and on parts of the extrastriate visual cortex, are

represented in a head egosphere coordinate system.

Receptive fields from the two retinas are well known to be

overlaid in registration on the tectum, and superior colliculus.

Experimental evidence indicates that registration and fusion of

data from visual and auditory sensors takes place in the tectum

of the bam owl [41] and the superior colliculus of the monkey

[42] in head egosphere coordinates. Motor output for eye

motion from the superior colliculus apparently is transformed
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Fig. 13. The velocity egosphere. On the velocity egosphere, the y-axis is

defined by the velocity factor, the j-axis points to the horizon on the right. A
is the angle between the velocity vector and a pixel on the egosphere, and B
is the angles between the r-axis and the plane defined by the velocity vector

and the pixel vector.

back into retinal egosphere coordinates. There is also evidence

that head egosphere coordinates are used in the visual areas

of the parietal cortex [43], [54],

3} Velocity Egosphere: The velocity egosphere is defined

by the velocity vector and the horizon. The velocity vector

defines the pole (y-axis) of the velocity egosphere, and the

x-axis points to the right horizon as shown in Fig. 13. The

egosphere coordinates [A.B) are defined such that A is the

angle between the pole and a pixel, and B is the angle between

the yoz plane and the plane of the great circle flow line

containing the pixel.

For egocenter translation without rotation through a station-

ary world, image flow occurs entirely along great circle arcs

defined by B =constant. The positive pole of the velocity

egosphere thus corresponds to the focus-of-expansion. The

negative pole corresponds to the focus-of-contraction. The

velocity egosphere is ideally suited for computing range from

image flow, as discussed in Section XIV.

4) Inertial Egosphere: The inertial egosphere has coordi-

nates of azimuth measured from a fixed point (such as North)

on the horizon, and elevation measured from the horizon.

The inertial egosphere does not rotate as a result of sensor or

body rotation. On the inertial egosphere, the world is perceived

as stationary despite image motion due to rotation of the

sensors and the head.

Fig. 14 illustrates the relationships between the four ego-

sphere coordinate systems. Pixel data in eye (or camera)

egosphere coordinates can be transformed into head (or sensor

platform) egosphere coordinates by knowledge of the position

and orientation of the sensor relative to the head. For example,

the position of each eye in the head is fixed and the orientation

of each eye relative to the head is known from stretch

receptors in the ocular muscles (or pan and tilt encoders on a

camera platform). Pixel data in head egosphere coordinates

can be transformed into inertial egosphere coordinates by

knowing the orientation of the head in inertial space. This

information can be obtained from the vestibular (or inertial)

system that measures the direction of gravity relative to the

head and integrates rotary accelerations to obtain head position

in inertial space. The inertial egosphere can be transformed

Fig. 14. A 2-D projection of four egosphere representations illustrating

angular relationships between egospheres. Pixels are represented on each

egosphere such that images remains in registration. Pixel attributes detected

on one egosphere may thus be inherited on others. Pixel resolution is not

typically uniform on a single egosphere. nor is it necessarily the same for

different egospheres, or for different attributes on the same egosphere.

into world coordinates by knowing the x. y. z position of the

center of the egosphere. This is obtained from knowledge

about where the self is located in the world. Pixels on any

egosphere can be transformed into the velocity egosphere by

knowledge of the direction of the current velocity vector on

that egosphere. This can be obtained from a number of sources

including the locomotion and vestibular systems.

All of the previous egosphere transformations can be in-

verted, so that conversions can be made in either direction.

Each transformation consists of a relatively simple vector

function that can be computed for each pixel in parallel. Thus

the overlay of sensory input with world model data can be

accomplished in a few milliseconds by the type of computing

architectures known to exist in the brain. In artificial systems,

full image egosphere transformations can be accomplished

within a television frame interval by state-of-the-art serial

computing hardware. Image egosphere transformations can be

accomplished in a millisecond or less by parallel hardware.

Hypothesis: The WM world maps, object maps, and ego-

spheres are the brains data fusion mechanisms. They provide

coordinate systems in which to integrate information from

arrays of sensors (i.e., rods and cones in the eyes, tactile

sensors in the skin, directional hearing, etc.) in space and

time. They allow information from different sensory modalities

(i.e., vision, hearing, touch, balance, and proprioception) to be

combined into a single consistent model of the world.

Hypothesis: The WM functions that transform data between

the world map and the various egosphere representations are

the brain’s geometry engine. They transform world model

predictions into the proper coordinate systems for real-time

comparison and correlation with sensory observations. This

provides the basis for recognition and perception.
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Transformations to and from the sensor egosphere, the

inertial egosphere, the velocity egosphere, and the world

map allow the intelligent system to sense the world from

one perspective and interpret it in another. They allow the

intelligent system to compute how entities in the world would

look from another viewpoint. They provide the ability to

overlay sensory input with world model predictions, and to

compute the geometrical and dynamical functions necessary to

navigate, focus attention, and direct action relative to entities

and regions of the world.

G. Entities

Definition: An entity is an element from the set {point,

line, surface, object, group}.

The world model contains information about entities stored

in lists, or frames. The knowledge database contains a list of all

the entities that the intelligent system knows about. A subset

of this list is the set of current-entities known to be present in

any given situation. A subset of the list of current-entities is

the set of entities-of-attention.

There are two types of entities: generic and specific. A
generic entity is an example of a class of entities. A generic

entity frame contains the attributes of its class. A specific

entity is a particular instance of an entity. A specific entity

frame inherits the attributes of the class to which it belongs.

An example of an entity frame might be:

ENTITY NAME name of entity

kind class or species of entity

type generic or specific point, line,

surface, object, or group

position world map coordinates

(uncertainty); egosphere

coordinates (uncertainty)

dynamics velocity (uncertainty );acceleration

(uncertainty)

tr^ectory sequence of positions

geometry center of gravity (uncertainty);

axis of symmetry

(uncertainty);size

(uncertainty);shape boundaries

(uncertainty)

links subentities; parent entity

properties physical: mass; color; substance;

behavioral: social (of animate

objects)

capabilities speed, range

value state-variables attract-repulse; confidence-fear;

love-hate

For example, upon observing a specific cow named Bertha,

an entity frame in the brain of a visitor to a farm might have

the following values:

ENTITY NAME Bertha

kind cow

type specific object

position i.y. : (in pasture map coordinates)

AZ. EL. R (in egosphere image of

observer)

dynamics velocity, acceleration (in egosphere or

pasture map coordinates)

tr^ectory sequence of map positions while grazing

geometry axis of symmetry (right/left)

size (6 X 3 X 10 ft)

shape (quadruped)

links subentities - surfaces (torso, neck, head,

legs, tail, etc.)

parent entity - group (herd)

properties physicahmass (1050 lbs); color (black and

white);

substance (flesh, bone, skin, hair);

behavioral (standing, placid, timid, etc.)

capabilities speed, range

value state-variables attract-repulse = 3 (visitor finds cows

moderately attractive)

confidence-fear= -2 (visitor slightly afraid

of cows)

love-hate = 1 (no strong feelings)

H. Map-Entity Relationship

Map and entity representations are cross referenced and

tightly coupled by real-time computing hardware. Each pixel

on the map has in its frame a pointer to the list of entities

covered by that pixel. For example, each pixel may cover a

point entity indicating brightness, color, spatial and temporal

gradients of brightness and color, image flow, and range for

each point. Each pixel may also cover a linear entity indicating

a brightness or depth edge or vertex; a surface entity indicating

area, slope, and texture; an object entity indicating the name

and attributes of the object covered; a group entity indicating

the name and attributes of the group covered, etc.

Likewise, each entity in the attention list may have in

its frame a set of geometrical parameters that enables the

world model geometry engine to compute the set of egosphere

or world map pixels covered by each entity, so that entity

parameters associated with each pixel covered can be overlaid

on the world and egosphere maps.

Cross referencing between pixel maps and entity frames

allows the results of each level of processing to add map

overlays to the egosphere and world map representations. The

entity database can be updated from knowledge of image

parameters at points on the egosphere, and the map database

can be predicted from knowledge of entity parameters in the

world model. At each level, local entity and map parameters

can be computed in parallel by the type of neurological

computing structures known to exist in the brain.

Many of the attributes in an entity frame are time de-

pendent state-variables. Each time dependent state-variable

may possess a short term memory queue wherein is stored

a state trajectory, or trace, that describes its temporal history.
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At each hierarchical level, temporal traces stretch backward

about as far as the planning horizon at that level stretches

into the future. At each hierarchical level, the historical trace

of an entity state-variable may be captured by summarizing

data values at several points in time throughout the historical

interval. Time dependent entity state-variable histories may

also be captured by running averages and moments, Fourier

transform coefficients, Kalman filter parameters, or other anal-

ogous methods.

Each state-variable in an entity frame may have value

state-variable parameters that indicate levels of believability,

confidence, support, or plausibility, and measures of dimen-

sional uncertainty. These are computed by value judgment

functions that reside in the VJ modules. These are described

in Section XV.

Value state-variable parameters may be overlaid on the

map and egosphere regions where the entities to which they

are assigned appear. This facilitates planning. For example,

approach-avoidance behavior can be planned on an egosphere

map overlay defined by the summation of attractor and re-

pulsor value state-variables assigned to objects or regions that

appear on the egosphere. Navigation planning can be done on

a map overlay whereon risk and benefit values are assigned to

regions on the egosphere or world map.

I. Entity Database Hierarchy

The entity database is hierarchically structured. Each entity

consists of a set of subentities, and is part of a parent entity.

For example, an object may consist of a set of surfaces, and

be part of a group.

The definition of an object is quite arbitrary, however, at

least from the point of view of the world model. For example,

is a nose an object? If so, what is a face? Is a head an object?

Or is it part of a group of objects comprising a body? If a

body can be a group, what is a group of bodies?

Only in the context of a task, does the definition of an

object become clear. For example, in a task frame, an object

may be defined either as the agent, or as acted upon by the

agent executing the task. Thus, in the context of a specific task,

the nose (or face, or head) may become an object because it

appears in a task frame as the agent or object of a task.

Perception in an intelligent system is task (or goal) driven,

and the structure of the world model entity database is defined

by, and may be reconfigured by, the nature of goals and tasks.

It is therefore not necessarily the role of the world model

to define the boundaries of entities, but rather to represent

the boundaries defined by the task frame, and to map regions

and entities circumscribed by those boundaries with sufficient

resolution to accomplish the task. It is the role of the sensory

processing system to identify regions and entities in the

external real world that correspond to those represented in

the world model, and to discover boundaries that circumscribe

objects defined by tasks.

Theorem: The world model is hierarchically structured with

map (iconic) and entity (symbolic) data structures at each level

of the hierarchy.

At level 1, the world model can represent map overlays

for point entities. In the case of vision, point entities may
consist of brightness or color intensities, and spatial and

temporal derivatives of those intensities. Point entity frames

include brightness spatial and temporal gradients and range

from stereo for each pixel. Point entity frames also include

transform parameters to and from head egosphere coordinates.

These representations are roughly analogous to Marr’s “primal

sketch” [44], and are compatible with experimentally observed

data representations in the tectum, superior colliculus, and

primary visual cortex (VI) [31].

At level 2, the world model can represent map overlays

for linear entities consisting of clusters, or strings, of point

entities. In the visual system, linear entities may consist of

connected edges (brightness, color, or depth), vertices, image

flow vectors, and trajectories of points in space/time. Attributes

such as 3-D position, orientation, velocity, and rotation are

represented in a frame for each linear entity. Entity frames

include transform parameters to and from inertial egosphere

coordinates. These representations are compatible with exper-

imentally observed data representations in the secondary visual

cortex (V2) [54].

At level 3, the world model can represent map overlays for

surface entities computed from sets of linear entities clustered

or swept into bounded surfaces or maps, such as terrain

maps, B-spline surfaces, or general functions of two variables.

Surface entities frames contain transform parameters to and

from object coordinates. In the case of vision, entity attributes

may describe surface color, texture, surface position and

orientation, velocity, size, rate of growth in size, shape, and

surface discontinuities or boundaries. Level 3 is thus roughly

analogous to Marr’s “2 1/2-D sketch”, and is compatible with

known representation of data in visual cortical areas V3 and

V4.

At level 4, the world model can represent map overlays

for object entities computed from sets of surfaces clustered or

swept so as to define 3-D volumes, or objects. Object entity

frames contain transform parameters to and from object coor-

dinates. Object entity frames may also represent object type,

position, translation, rotation, geometrical dimensions, surface

properties, occluding objects, contours, axes of symmetry,

volumes, etc. These are analogous to Marr’s “3-D model”

representation, and compatible with data representations in

occipital-temporal and occipital-parietal visual areas.

At level 5, the world model can represent map overlays

for group entities consisting of sets of objects clustered into

groups or packs. This is hypothesized to correspond to data

representations in visual association areas of parietal and tem-

poral cortex. Group entity frames contain transform parameters

to and from world coordinates. Group entity frames may

also represent group species, center of mass, density, motion,

map position, geometrical dimensions, shape, spatial axes of

symmetry, volumes, etc.

At level 6, the world model can represent map overlays

for sets of group entities clustered into groups of groups, or

group* entities. At level 7, the world model can represent map

overlays for sets of group* entities clustered into group*^ (or

world) entities, and so on. At each higher level, world map

resolution decreases and range increases by about an order of
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magnitude per level.

The highest level entity in the world model is the world

itself, i.e., the environment as a whole. The environment entity

frame contains attribute state-variables that describe the state

of the environment, such as temperature, wind, precipitation,

illumination, visibility, the state of hostilities or peace, the

current level of danger or security, the disposition of the gods,

etc.

J. Events

Definition: An event is a state, condition, or situation that

exists at a point in time, or occurs over an interval in time.

Events may be represented in the world model by frames

with attributes such as the point, or interval, in time and

space when the event occurred, or is expected to occur. Event

frames attributes may indicate start and end time, duration,

type, relationship to other events, etc.

An example of an event frame is;

EVENT NAME name of event

kind class or species

type generic or specific

modality visual, auditory, tactile, etc.

time when event detected

interval period over which event took place

position map location where event occurred

links subevents; parent event

value good-bad, benefit-cost, etc.

State-variables in the event frame may have confidence

levels, degrees of support and plausibility, and measures

of dimensional uncertainty similar to those in spatial entity

frames. Confidence state-variables may indicate the degree

of certainty that an event actually occurred, or was correctly

recognized.

The event frame database is hierarchical. At each level of

the sensory processing hierarchy, the recognition of a pattern,

or string, of level(i) events makes up a single level(? -t-l) event.

Hypothesis: The hierarchical levels of the event frame

database can be placed in one-to-one correspondence with

the hierarchical levels of task decomposition and sensory

processing.

For example at: Level 1—an event may span a few millisec-

onds. A typical level(l) acoustic event might be the recognition

of a tone, hiss, click, or a phase comparison indicating the

direction of arrival of a sound. A typical visual event might

be a change in pixel intensity, or a measurement of brightness

gradient at a pixel.

Level 2—an event may span a few tenths of a second. A
typical level(2) acoustic event might be the recognition of a

phoneme or a chord. A visual event might be a measurement of

image flow or a trajectory segment of a visual point or feature.

Level 3—an event may span a few seconds, and consist of

the recognition of a word, a short phrase, or a visual gesture,

or motion of a visual surface.

Level 4—an event may span a few tens of seconds, and

consist of the recognition of a message, a melody, or a visual

observation of object motion, or task activity.

Level 5—an event may span a few minutes and consist of

listening to a conversation, a song, or visual observation of

group activity in an extended social exchange.

Level 6—an event may span an hour and include many

auditory, tactile, and visual observations.

Level 7—an event may span a day and include a summary

of sensory observations over an entire day’s activities.

XIV. Sensory Processing

Definition: Sensory processing is the mechanism of per-

ception.

Theorem: Perception is the establishment and maintenance

of correspondence between the internal world model and the

external real world.

Corollary’: The function of sensory processing is to extract

information about entities, events, states, and relationships in

the external world, so as keep the world model accurate and

up to date.

A. Measurement of Surfaces

World model maps are updated by sensory measurement

of points, edges, and surfaces. Such information is usually

derived from vision or touch sensors, although some intelligent

systems may derive it from sonar, radar, or laser sensors.

The most direct method of measuring points, edges, and

surfaces is through touch. Many creatures, from insects to

mammals, have antennae or whiskers that are used to measure

the position of points and orientation of surfaces in the

environment. Virtually all creatures have tactile sensors in the

skin, particularly in the digits, lips, and tongue. Proprioceptive

sensors indicate the position of the feeler or tactile sensor

relative to the self when contact is made with an external sur-

face. This, combined with knowledge of the kinematic position

of the feeler endpoint, provides the information necessary' to

compute the position on the egosphere of each point contacted.

A series of felt points defines edges and surfaces on the

egosphere.

Another primitive measure of surface orientation and depth

is available from image flow (i.e., motion of an image on the

retina of the eye). Image flow may be caused either by motion

of objects in the world, or by motion of the eye through

the world. The image flow of stationary objects caused by

translation of the eye is inversely proportional to the distance

from the eye to the point being observed. Thus, if eye rotation

is zero, and the translational velocity of the eye is known, the

focus of expansion is fixed, and image flow lines are defined

by great circle arcs on the velocity egosphere that emanate

from the focus of expansion and pass through the pixel in

question [45]. Under these conditions, range to any stationary

point in the world can be computed directly from image flow

by the simple formula

where R is the range to the point, v is translational velocity

vector of the eye, A is the angle between the velocity vector
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and the pixel covering the point. dA/dt is the image flow rate

at the pixel covering the point

When eye rotation is zero and v is known, the flow rate

dA/dt can be computed locally for each pixel from temporal

and spatial derivatives of image brightness along flow lines

on the velocity egosphere. dA/dt can also be computed from

temporal crosscorrelation of brightness from adjacent pixels

along flow lines.

When the eye fixates on a point, dA/dt is equal to the

rotation rate of the eye. Under this condition, the distance to

the fixation point can be computed from (1), and the distance

to other points may be computed from image flow relative to

the fixation point.

If eye rotation is nonzero but known, the range to any

stationary point in the world may be computed by a closed

form formula of the form

R = F y, T, W.
dt dx' dy )

(2 )

where x and r are the image coordinates of a pixel, T
is the translational velocity vector of the camera in camera

coordinates, W is the rotational velocity vector of the camera

in camera coordinates, and / is the pixel brightness intensity.

This type of function can be implemented locally and in

parallel by a neural net for each image pixel [46].

Knowledge of eye velocity, both translational and rotational,

may be computed by the vestibular system, the locomotion

system, and/or high levels of the vision system. Knowledge of,

rotational eye motion may either be used in the computation

of range by (2), or can be used to transform sensor egosphere

images into velocity egosphere coordinates where (1) applies.

This can be accomplished mechanically by the vestibulo-

ocular reflex, or electronically (or neuronally) by scrolling the

input image through an angle determined by a function of data

variables from the vestibular system and the ocular muscle

stretch receptors. Virtual transformation of image coordinates

can be accomplished using coordinate transform parameters

located in each map pixel frame.

Depth from image flow enables creatures of nature, from fish

and insects to birds and mammals, to maneuver rapidly through

natural environments filled with complex obstacles without

collision. Moving objects can be segmented from stationary by

their failure to match world model predictions for stationary

objects. Near objects can be segmented from distant by their

differential flow rates.

Distance to surfaces may also be computed from stereo-

vision. The angular disparity between images in two eyes

separated by a known distance can be used to compute range.

Depth from stereo is more complex than depth from image

flow in that it requires identification of corresponding points

in images from different eyes. Hence it cannot be computed

locally. However, stereo is simpler than image flow in that it

does not require eye translation and is not confounded by eye

rotation or by moving objects in the world. The computation

of distance from a combination of both motion and stereo is

more robust, and hence psychophysically more vivid to the

observer, than from either motion or stereo alone.

Distance to surfaces may also be computed from sonar

or radar by measuring the time delay between emitting ra-

diation and receiving an echo. Difficulties arise from poor

angular resolution and from a variety of sensitivity, scattering,

and multipath problems. Creatures such as bats and marine

mammals use multispectral signals such as chirps and clicks

to minimize confusion from these effects. Phased arrays and

synthetic apertures may also be used to improve the resolution

of radar or sonar systems.

All of the previous methods for perceiving surfaces are

primitive in the sense that they compute depth directly from

sensory input without recognizing entities or understanding

anything about the scene. Depth measurements from primitive

processes can immediately generate maps that can be used di-

rectly by the lower levels of the behavior generation hierarchy

to avoid obstacles and approach surfaces.

Surface attributes such as position and orientation may also

be computed from shading, shadows, and texture gradients.

These methods typically depend on higher levels of visual

perception such as geometric reasoning, recognition of objects,

detection of events and states, and the understanding of scenes.

B. Recognition and Detection

Definition: Recognition is the establishment of a one-to-one

match, or correspondence, between a real world entity and a

world model entity.

The process of recognition may proceed top-down, or

bottom-up, or both simultaneously. For each entity in the world

model, there exists a frame filled with information that can be

used to predict attributes of corresponding entities observed

in the world. The top-down process of recognition begins

by hypothesizing a world model entity and comparing its

predicted attributes with those of the observed entity. When
the similarities and differences between predictions from the

world model and observations from sensory processing are

integrated over a space-time window that covers an entity, a

matching, or crosscorrelation value is computed between the

entity and the model. If the correlation value rises above a

selected threshold, the entity is said to be recognized. If not,

the hypothesized entity is rejected and another tried.

The bottom-up process of recognition consists of applying

filters and masks to incoming sensory data, and computing

image properties and attributes. These may then be stored

in the world model, or compared with the properties and

attributes of entities already in the world model. Both top-

down and bottom-up processes proceed until a match is

found, or the list of world model entities is exhausted. Many

perceptual matching processes may operate in parallel at

multiple hierarchical levels simultaneously.

If a SP module recognizes a specific entity, the WM at that

level updates the attributes in the frame of that specific WM
entity with information from the sensory system.

If the SP module fails to recognize a specific entity, but

instead achieves a match between the sensory input and a

generic world model entity, a new specific WM entity will be

created with a frame that initially inherits the features of the

generic entity. Slots in the specific entity frame can then be
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updated with information from the sensory input.

If the SP module fails to recognize either a specific or a

generic entity, the WM may create an “unidentified” entity

with an empty frame. This may then be filled with information

gathered from the sensory input.

When an unidentified entity occurs in the world model,

the behavior generation system may (depending on other

priorities) select a new goal to <identify the unidentified

entity>. This may initiate an exploration task that positions

and focuses the sensor systems on the unidentified entity, and

possibly even probes and manipulates it, until a world model

frame is constructed that adequately describes the entity. The

sophistication and complexity of the exploration task depends

on task knowledge about exploring things. Such knowledge

may be very advanced and include sophisticated tools and

procedures, or very primitive. Entities may, of course, simply

remain labeled as “unidentified,” or unexplained.

Event detection is analogous to entity recognition. Observed

states of the real world are compared with states predicted by

the world model. Similarities and differences are integrated

over an event space-time window, and a matching, or cross-

correlation value is computed between the observed event and

the model event. When the crosscorrelation value rises above

a given threshold, the event is detected.

C. The Context of Perception

If, as suggested in Fig. 5, there exists in the world model

at every hierarchical level a short term memory in which is

stored a temporal history consisting of a series of past values

of time dependent entity and event attributes and states, it can

be assumed that at any point in time, an intelligent system

has a record in its short term memory of how it reached its

current state. Figs. 5 and 6 also imply that, for every planner

in each behavior generating BG module at each level, there

exists a plan, and that each executor is currently executing the

first step in its respective plan. Finally, it can be assumed that

the knowledge in all these plans and temporal histories, and

all the task, entity, and event frames referenced by them, is

available in the world model.

Thus it can be assumed that an intelligent system almost

always knows where it is on a world map, knows how it got

there, where it is going, what it is doing, and has a current list

of entities of attention, each of which has a frame of attributes

(or state variables) that describe the recent past, and provide

a basis for predicting future states. This includes a prediction

of what objects will be visible, where and how object surfaces

will appear, and which surface boundaries, vertices, and points

will be observed in the image produced by the sensor system.

It also means that the position and motion of the eyes, ears,

and tactile sensors relative to surfaces and objects in the world

are known, and this knowledge is available to be used by the

sensory processing system for constructing maps and overlays,

recognizing entities, and detecting events.

Were the aforementioned not the case, the intelligent system

would exist in a situation analogous to a person who suddenly

awakens at an unknown point in space and time. In such cases,

it typically is necessary even for humans to perform a series

Fig. 15. Each sensory processing SP module consists of the following. 1)

A set of comparators that compare sensory observations with world model

predictions, 2) a set of temporal integrators that integrate similarities and

differences, 3) a set of spatial integrators that fuse information from different

sensory data streams, and 4) a set of threshold detectors that recognize entities

and detect events.

of tasks designed to “regain their bearings”, i.e., to bring their

world model into correspondence with the state of the external

world, and to initialize plans, entity frames, and system state

variables.

It is, of course, possible for an intelligent creature to

function in a totally unknown environment, but not well,

and not for long. Not well, because every intelligent creature

makes much good use of the historical information that

forms the context of its current task. Without information

about where it is, and what is going on, even the most

intelligent creature is severely handicapped. Not for long,

because the sensory processing system continuously updates

the world model with new information about the current

situation and its recent historical development, so that, within

a few seconds, a functionally adequate map and a usable set

of entity state variables can usually be acquired from the

immediately surrounding environment.

D. Sensory Processing SP Modules

At each level of the proposed architecture, there are a

number of computational nodes. Each of these contains an

SP module, and each SP module consists of four sublevels,

as shown in Fig. 15.

Sublevel 1—Comparison: Each comparison submodule

matches an observed sensory variable with a world model

prediction of that variable. This comparison typically involves

an arithmetic operation, such as multiplication or subtraction,

which yields a measure of similarity and difference between

an observed variable and a predicted variable. Similarities

indicate the degree to which the WM predictions are correct,

and hence are a measure of the correspondence between

the world model and reality. Differences indicate a lack of
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correspondence between world model predictions and sensory

observations. Differences imply that either the sensor data

or world model is incorrect. Difference images from the

comparator go three places:

1) They are returned directly to the WM for real-time local

pixel attribute updates. This produces a tight feedback

loop whereby the world model predicted image becomes

an array of Kalman filter state-estimators. Difference

images are thus error signals by which each pixel of the

predicted image can be trained to correspond to current

sensory input.

2) They are also transmitted upward to the integration

sublevels where they are integrated over time and space

in order to recognize and detect global entity attributes.

This integration constitutes a summation, or chunking, of

sensory data into entities. At each level, lower order en-

tities are “chunked” into higher order entities, i.e., points

are chunked into lines, lines into surfaces, surfaces into

objects, objects into groups, etc.

3) They are transmitted to the VJ module at the same level

where statistical parameters are computed in order to

assign confidence and believability factors to pixel entity

attribute estimates.

Sublevel 2—Temporal integration: Temporal integration

submodules integrate similarities and differences between

predictions and observations over intervals of time. Temporal

integration submodules operating just on sensory data can

produce a summary, such as a total, or average, of sensory

information over a given time window. Temporal integrator

submodules operating on the similarity and difference values

computed by comparison submodules may produce temporal

crosscorrelation and covariance functions between the model

and the observed data. These correlation and covariance

functions are measures of how well the dynamic properties

of the world model entity match those of the real world entity.

The boundaries of the temporal integration window may be

derived from world model prediction of event durations, or

form behavior generation parameters such as sensor fixation

periods.

Sublevel 3—Spatial integration: Spatial integrator submod-

ules integrate similarities and differences between predictions

and observations over regions of space. This produces spatial

crossconelation or convolution functions between the model

and the observed data. Spatial integration summarizes sensory

information from multiple sources at a single point in time.

It determines whether the geometric properties of a world

model entity match those of a real world entity. For example,

the product of an edge operator and an input image may be

integrated over the area of the operator to obtain the correlation

between the image and the edge operator at a point. The

limits of the spatial integration window may be determined

by world model predictions of entity size. In some cases, the

order of temporal and spatial integration may be reversed, or

interleaved.

Sublevel 4—Recognition/Detection threshold: When the

spatiotemporal correlation function exceeds some threshold,

object recognition (or event detection) occurs. For example.

Fig. 16. Interaction between world model and sensory processing. Differ-

ence images are generator by comparing predicted images with observed

images. Feedback of differences produces a Kalman best estimate for each

data variable in the world model. Spatial and temporal integration produce

crosscorrelation functions between the estimated attributes in the world model

and the real-world attributes measured in the observed image. When the

correlation exceeds threshold, entity recognition occurs.

if the spatiotemporal summation over the area of an edge

operator exceeds threshold, an edge is said to be detected at

the center of the area.

Fig. 16 illustrates the nature of the SP-WM interactions

between an intelligent vision system and the world model at

one level. On the left of Fig. 16, the world of reality is viewed

through the window of an egosphere such as exists in the

primary visual cortex. On the right is a world model consisting

of: 1) a symbolic entity frame in which entity attributes are

stored, and 2) an iconic predicted image that is registered in

real-time with the observed sensory image. In the center of Fig.

16, is a comparator where the expected image is subtracted

from (or otherwise compared with) the observed image.

The level(z) predicted image is initialized by the equivalent

of a graphics engine operating on symbolic data from frames

of entities hypothesized at level(i-|- 1). The predicted image is

updated by differences between itself and the observed sensory

input. By this process, the predicted image becomes the world

model’s “best estimate prediction” of the incoming sensory

image, and a high speed loop is closed between the WM and

SP modules at level(z).

When recognition occurs in level (i), the world model

level(z -f 1) hypothesis is confirmed and both level(z) and

level(i -I- 1) symbolic parameters that produced the match

are updated in the symbolic database. This closes a slower,

more global, loop between WM and SP modules through the

symbolic entity frames of the world model. Many examples

of this type of looping interaction can be found in the model

matching and model-based recognition literature [47]. Similar

closed loop filtering concepts have been used for years for

signal detection, and for dynamic systems modeling in aircraft

flight control systems. Recently they have been applied to
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high speed visually guided driving of an autonomous ground

vehicle [48].

The behavioral performance of intelligent biological crea-

tures suggests that mechanisms similar to those shown in

Figs. 15 and 16 exist in the brain. In biological or neural

network implementations, SP modules may contain thousands,

even millions, of comparison submodules, temporal and spatial

integrators, and threshold submodules. The neuroanatomy of

the mammalian visual system suggests how maps with many

different overlays, as well as lists of symbolic attributes, could

be processed in parallel in real-time. In such structures it is

possible for multiple world model hypotheses to be compared

with sensory observations at multiple hierarchical levels, all

simultaneously.

E. World Model Update

Attributes in the world model predicted image may be

updated by a formula of the form

x{t -f 1) = x{t) + Ay{t) Bu{t) -t- K{t)[x{t) - x(f)]

(3 )

where x{t) is the best estimate vector of world model i-order

entity attributes at time A is a matrix that computes the

expected rate of change of x(f) given the current best estimate

of the f-l- 1 order entity attribute vector y{t), B is a matrix that

computes the expected rate of change of x{t) due to external

input u{t), and K{t) is a confidence factor vector for updating

x{t). The value of K{t) may be computed by a formula of

the form

K{t) = Ks{j,t)[l -
(4)

where Ks{j,t) is the confidence in the sensory observation of

the jth real world attribute x(j, f) at time t, 0 < Ks{j.t) < 1

Km{j',t) is the confidence in the world model prediction of

the jth attribute at time f 0 < Km{j,t) < 1.

The confidence factors {Km and Ks) in formula (4) may
depend on the statistics of the correspondence between the

world model entity and the real world entity (e.g. the number

of data samples, the mean and variance of [x{t) - x(f)], etc.).

A high degree of correlation between x{t) and
[
x{t)] in both

temporal and spatial domains indicates that entities or events

have been correctly recognized, and states and attributes of

entities and events in the world model correspond to those

in the real world environment. World model data elements

that match observed sensory data elements are reinforced by

increasing the confidence, or believability factor, KmijJ) for

the entity or state at location j in the world model attribute

lists. World model entities and states that fail to match sensory

observations have their confidence factors Km{j,t) reduced.

The confidence factor Ka{j, t) may be derived from the signal-

to-noise ratio of the jth sensory data stream.

The numerical value of the confidence factors may be

computed by a variety of statistical methods such Baysian or

Dempster-Shafer statistics.

F. The Mechanisms of Attention

Theorem: Sensory processing is an active process that is

directed by goals and priorities generated in the behavior

generating system.

In each node of the intelligent system hierarchy, the behav-

ior generating BG modules request information needed for the

current task from sensory processing SP modules. By means

of such requests, the BG modules control the processing of

sensory information and focus the attention of the WM and

SP modules on the entities and regions of space that are

important to success in achieving behavioral goals. Requests

by BG modules for specific types of information cause SP

modules to select particular sensory processing masks and

filters to apply to the incoming sensory data. Requests from

BG modules enable the WM to select which world model

data to use for predictions, and which prediction algorithm to

apply to the world model data. BG requests also define which

correlation and differencing operators to use, and which spatial

and temporal integration windows and detection thresholds to

apply.

Behavior generating BG modules in the attention subsystem

also actively point the eyes and ears, and direct the tactile

sensors of antennae, fingers, tongue, lips, and teeth toward

objects of attention. BG modules in the vision subsystem

control the motion of the eyes, adjust the iris and focus,

and actively point the fovea to probe the environment for

the visual information needed to pursue behavioral goals [49],

[50]. Similarly, BG modules in the auditory subsystem actively

direct the ears and tune audio filters to mask background noises

and discriminate in favor of the acoustic signals of importance

to behavioral goals.

Because of the active nature of the attention subsystem,

sensor resolution and sensitivity is not uniformly distributed,

but highly focused. For example, receptive fields of optic nerve

fibers from the eye are several thousand times more densely

packed in the fovea than near the periphery of the visual field.

Receptive fields of touch sensors are also several thousand

times more densely packed in the finger tips and on the lips

and tongue, than on other parts of the body such as the torso.

The active control of sensors with nonuniform resolution

has profound impact on the communication bandwidth, com-

puting power, and memory capacity required by the sensory

processing system. For example, there are roughly 500000

fibers in the the optic nerve from a single human eye. These

fibers are distributed such that about 100000 are concentrated

in the ±1.0 degree foveal region with resolution of about

0.007 degrees. About 100000 cover the surrounding ±3 degree

region with resolution of about 0.02 degrees. 100000 more

cover the surrounding ±10 degree region with resolution of

0.07 degrees. 100000 more cover the surrounding 30 degree

region with a resolution of about 0.2 degrees. 100000 more

cover the remaining ±80 degree region with resolution of

about 0.7 degree [51]. The total number of pixels is thus

about 500000 pixels, or somewhat less than that contained

in two standard commercial TV images. Without nonuniform

resolution, covering the entire visual field with the resolution

of the fovea would require the number of pixels in about 6 000
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Standard TV images. Thus, for a vision sensory processing

system with any given computing capacity, active control and

nonuniform resolution in the retina can produce more than

three orders of magnitude improvement in image processing

capability.

SP modules in the attention subsystem process data from

low-resolution wide-angle sensors to detect regions of interest,

such as entities that move, or regions that have discontinuities

(edges and lines), or have high curvature (comers and inter-

sections). The attention BG modules then actively maneuver

the eyes, fingers, and mouth so as to bring the high resolution

portions of the sensory systems to bear precisely on these

points of attention. The result gives the subjective effect of

high resolution everywhere in the sensory field. For example,

wherever the eye looks, it sees with high resolution, for the

fovea is always centered on the item of current interest.

The act of perception involves both sequential and parallel

operations. For example, the fovea of the eye is typically

scanned sequentially over points of attention in the visual field

[52]. Touch sensors in the fingers are actively scanned over

surfaces of objects, and the ears may be pointed toward sources

of sound. While this sequential scanning is going on, parallel

recognition processes hypothesize and compare entities at all

levels simultaneously.

G. The Sensory Processing Hierarchy

It has long been recognized that sensory processing occurs

in a hierarchy of processing modules, and that perception

proceeds by “chunking”, i.e., by recognizing patterns, groups,

strings, or clusters of points at one level as a single feature,

or point in a higher level, more abstract space. It also has

been observed that this chunking process proceeds by about

an order of magnitude per level, both spatially and temporally

[17], [18]. Thus, at each level in the proposed architecture, SP

modules integrate, or chunk, information over space and time

by about an order of magnitude.

Fig. 17 describes the nature of the interactions hypothesized

to take place between the sensory processing and world

modeling modules at the first four levels, as the recognition

process proceeds. The functional properties of the SP modules

are coupled to, and determined by, the predictions of the

WM modules in their respective processing nodes. The WM
predictions are, in turn, effected by states of the BG modules.

Hypothesis: There exist both iconic (maps) and symbolic

(entity frames) at all levels of the SPAVM hierarchy of the

mammalian vision system.

Fig. 18 illustrates the concept stated in this hypothesis.

Visual input to the retina consists of photometric brightness

and color intensities measured by rods and cones. Brightness

intensities are denoted by I{k, AZ, EL.t), where / is the

brightness intensity measured at time t by the pixel at sensor

egosphere azimuth AZ and elevation EL of eye (or camera)

k. Retinal intensity signals 1 may vary over time intervals on

the order of a millisecond or less.

Image preprocessing is performed on the retina by hori-

zontal, bipolar, amacrine, and ganglion cells. Center-surround

receptive fields (“on-center” and “off-center”) detect both

spatial and temporal derivatives at each point in the visual

Fig. 17. The nature of the interactions that take place between the world

model and sensory processing modules. At each level, predicted entities are

compared with bo observed. Differences are returned as errors directly to

the world model to update the model. Correlations are forwarded upward to

be integrated over time and space windows provided by the world model.

Correlations that exceed threshold are d recognized as entities.

field. Outputs from the retina carried by ganglion cell axons

become input to sensory processing level 1 as shown in Fig.

18. Level 1 inputs correspond to events of a few milliseconds

duration.

It is hypothesized that in the mammalian brain, the level 1

vision processing module consists of the neurons in the lateral

geniculate bodies, the superior colliculus, and the primary

visual cortex (Vl). Optic nerve inputs from the two eyes are

overlaid such that the visual fields from left and right eyes

are in registration. Data from stretch sensors in the ocular

muscles provides information to the superior colliculus about

eye convergence, and pan, tilt, and roll of the retina relative to

the head. This allows image map points in retinal coordinates

to be transformed into image map points in head coordinates

(or vice versa) so that visual and acoustic position data can

be registered and fused [41], [42]. In LI, registration of

corresponding pixels from two separate eyes on single neurons

also provides the basis for range from stereo to be computed

for each pixel [31].

At level 1, observed point entities are compared with pre-

dicted point entities. Similarities and differences are integrated

into linear entities. Strings of level 1 input events are integrated

into level 1 output events spanning a few tens of milliseconds.

Level 1 outputs become level 2 inputs.

The level 2 vision processing module is hypothesized to
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Fig. 18. Hypothesized correspondence between levels in the proposed model

and neuranatomical structures in the mammalian vision system. At each level,

the WM module contains both iconic and symbolic representations. At each

level, the SP module compares the observed image with a predicted image.

At each level, both iconic and symbolic world models are updated, and

map overlays are computed. LGN is the lateral geniculate nuclei, OT is

the occipital-temporal, OP is the occipital-parietal, and SC is the superior

colliculus.

consist of neurons in the secondary visual cortex (V2). At

level 2, observed linear entities are compared with predicted

linear entities. Similarities and differences are integrated into

surface entities. Some individual neurons indicate edges and

lines at particular orientations. Other neurons indicate edge

points, curves, trajectories, vertices, and boundaries.

Input to the world model from the vestibular system indi-

cates the direction of gravity and the rotation of the head. This

allows the level 2 world model to transform head egosphere

representations into inertial egosphere coordinates where the

world is perceived to be stationary despite rotation of the

sensors.

Acceleration data from the vestibular system, combined with

velocity data from the locomotion system, provide the basis

for estimating both rotary and linear eye velocity, and hence

image flow direction. This allows the level 2 world model

to transform head egosphere representations into velocity

egosphere coordinates where depth from image flow can be

computed. Center-surround receptive fields along image flow

lines can be subtracted from each other to derive spatial

derivatives in the flow direction. At each point where the

spatial derivative in the flow direction is nonzero, spatial and

temporal derivatives can be combined with knowledge of eye

velocity to compute the image flow rate dA/dt [45]. Range

to each pixel can then be computed directly, and in parallel,

from local image data using formula (1) or (2).

The previous egosphere transformations do not necessarily

imply that neurons are physically arranged in inertial or

velocity egosphere coordinates on the visual cortex. If that

were true, it would require that the retinal image be scrolled

over the cortex, and there is little evidence for this, at least

in VI and V2. Instead, it is conjectured that the neurons

that make up both observed and predicted iconic images

exist on the visual cortex in retinotopic, or sensor egosphere,

coordinates. The velocity and inertial egosphere coordinates

for each pixel are defined by parameters in the symbolic entity

frame of each pixel. The inertial, velocity (and perhaps head)

egospheres may thus be “virtual” egospheres. The position

of any pixel on any egosphere can be computed by using the

transformation parameters in the map pixel frame as an indirect

address offset. This allows velocity and inertial egosphere

computations to be performed on neural patterns that are

physically represented in sensor egosphere coordinates.

The possibility of image scrolling cannot be ruled out,

however, particularly at higher levels. It has been observed

that both spatial and temporal retinotopic specificity decreases

about two orders of magnitude from V^l to V4 [54]. This is

consistent with scrolling.

Strings of level 2 input events are integrated into level 3

input events spanning a few hundreds of milliseconds.

The level 3 vision processing module is hypothesized to

reside in areas V3 and \A of the visual cortex. Observed

surface entities are compared with predicted surface entities.

Similarities and differences are integrated to recognize object

entities. Cells that detect texture and motion of regions in

specific directions provide indication of surface boundaries and

depth discontinuities. Correlations and differences between

world model predictions and sensory observations of surfaces

give rise to meaningful image segmentation and recognition of

surfaces. World model knowledge of lighting and texture allow

computation of surface orientation, discontinuities, boundaries,

and physical properties.

Strings of level 3 input events are integrated into level 4 in-

put events spanning a few seconds. (This does not necessarily

imply that it takes seconds to recognize surfaces, but that both

patterns of motion that occupy a few seconds, and surfaces,

are recognized at level 3. For example, the recognition of a

gesture, or dance step, might occur at this level.)

World model knowledge of the position of the self relative

to surfaces enables level 3 to compute offset variables for each

pixel that transform it from inertial egosphere coordinates into

object coordinates.

The level 4 vision processing module is hypothesized to

reside in the posterior inferior temporal and ventral intrapari-

etal regions of visual cortex. At level 4, observed objects are

compared with predicted objects. Correlations and differences

between world model predictions and sensory observations of

objects allows shape, size, and orientation, as well as location,

velocity, rotation, and size-changes of objects to be recognized

and measured.

World model input from the locomotion and navigation

systems allow level 4 to transform object coordinates into

world coordinates. Strings of level 4 input events are grouped

into level 5 input events spanning a few tens of seconds.

Level 5 vision is hypothesized to reside in the visual

association areas of the parietal and temporal cortex. At level

5, observed groups of objects are compared with predicted
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groups. Correlations are integrated into group- entities. Strings

of level 5 input events are detected as level 5 output events

spanning a few minutes. For example, in the anterior inferior

temporal region particular groupings of objects such as eyes,

nose, and mouth are recognized as faces. Groups of fingers can

be recognized as hands, etc. In the parietal association areas,

map positions, orientations, rotations of groups of objects are

detected. At level 5, the world model map has larger span and

lower resolution than level 4.

At level 6, clusters of group^ entities are recognized as

group^ entities, and strings of level 6 input events are grouped

into level 6 output events spanning a few tens of minutes.

The world model map at level 7 has larger span and lower

resolution than at level 6.

At level 7, strings of level 7 input events are grouped into

level 7 output events spanning a few hours.

It must be noted that the neuroanatomy of the mammalian

vision system is much more convoluted than suggested by

Fig. 18. Van Essen [53] has compiled a list of 84 identified

or suspected pathways connecting 19 visual areas. Visual

processing is accomplished in at least two separate subsystems

that are not differentiated in Fig. 18. The subsystem that

includes the temporal cortex emphasizes the recognition of

entities and their attributes such as shape, color, orientation,

and grouping of features. The subsystem that includes the

parietal cortex emphasizes spatial and temporal relationships

such as map positions, timing of events, velocity, and direction

of motion [54]. It should also be noted that analogous figures

could be drawn for other sensory modalities such as hearing

and touch.

H. Gestalt Effects

When an observed entity is recognized at a particular

hierarchical level, its entry into the world model provides

predictive support to the level below. The recognition output

also flows upward where it narrows the search at the level

above. For example, a linear feature recognized and entered

into the world model at level 2, can be used to generate

expected points at level 1. It can also be used to prune the

search tree at level 3 to entities that contain that particular

type of linear feature. Similarly, surface features at level

3 can generate specific expected linear features at level 2,

and limit the search at level 4 to objects that contain such

surfaces, etc. The recognition of an entity at any level thus

provides to both lower and higher levels information that is

useful in selecting processing algorithms and setting spatial

and temporal integration windows to integrate lower level

features into higher level chunks.

If the correlation function at any level falls below threshold,

the current world mode! entity or event at that level will be

rejected, and others tried. When an entity or event is rejected,

the rejection also propagates both upward and downward,

broadening the search space at both higher and lower levels.

At each level, the SP and WM modules are coupled so as

to form a feedback loop that has the properties of a relaxation

process, or phase-lock loop. WM predictions are compared

with SP observations, and the correlations and differences

are fed back to modify subsequent WM predictions. WM
predictions can thus be “servoed” into correspondence with

the SP observations. Such looping interactions will either

converge to a tight correspondence between predictions and

observations, or will diverge to produce a definitive set of

irreconcilable differences.

Perception is complete only when the correlation functions

at all levels exceed threshold simultaneously. It is the nature

of closed loop processes for lock-on to occur with a positive

“snap”. This is especially pronounced in systems with many
coupled loops that lock on in quick succession. The result is

a gestalt “aha” effect that is characteristic of many human

perceptions.

7. Flywheeling, Hysteresis, and Illusion

Once recognition occurs, the looping process between SP

and WM acts as a tracking filter. This enables world model

predictions to track real world entities through noise, data

dropouts, and occlusions.

In the system described previously, recognition will occur

when the first hypothesized entity exceeds threshold. Once

recognition occurs, the search process is suppressed, and

the thresholds for all competing recognition hypotheses are

effectively raised. This creates a hysteresis effect that tends to

keep the WM predictions locked onto sensory input during the

tracking mode. It may also produce undesirable side effects,

such as a tendency to perceive only what is expected, and a

tendency to ignore what does not fit preconceived models of

the world.

In cases where sensory data is ambiguous, there is more

than one model that can match a particular observed object. ^

The first model that matches will be recognized, and other
|

models will be suppressed. TTiis explains the effects produced

by ambiguous figures such as the Necker cube.

Once an entity has been recognized, the world model

projects its predicted appearance so that it can be compared

with the sensory input. If this predicted information is added

to, or substituted for, sensory input, perception at higher levels

will be based on a mix of sensory observations and world

model predictions. By this mechanism, the world model may
fill in sensory data that is missing, and provide information that

may be left out of the sensory data. For example, it is well

known that the audio system routinely “flywheels” through

interruptions in speech data, and fills-in over noise bursts.

This merging of world model predictions with sensory

observations may account for many familiar optical illusions

such as subjective contours and the Ponzo illusion. In patho-

logical cases, it may also account for visions and voices, and

an inability to distinguish between reality and imagination.

Merging of world model prediction with sensory observation

is what Grossberg calls “adaptive resonance” [55].

XV. Value Judgments

Value judgments provide the criteria for making intelligent
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choices. Value judgments evaluate the costs, risks, and benefits

of plans and actions, and the desirability, attractiveness, and

uncertainty of objects and events. Value judgment modules

produce evaluations that can be represented as value state-

variables. These can be assigned to the attribute lists in entity

frames of objects, persons, events, situations, and regions of

space. They can also be assigned to the attribute lists of plans

and actions in task frames. Value state-variables can label

entities, tasks, and plans as good or bad, costly or inexpensive,

as important or trivial, as attractive or repulsive, as reliable

or uncertain. Value state-variables can also be used by the

behavior generation modules both for planning and executing

actions. They provide the criteria for decisions about which

coarse of action to take [56].

Definition: Emotions are biological value state-variables

that provide estimates of good and bad.

Emotion value state-variables can be assigned to the at-

tribute lists of entities, events, tasks, and regions of space so

as to label these as good or bad, as attractive or repulsive,

etc. Emotion value state-variables provide criteria for making

decisions about how to behave in a variety of situations. For

example, objects or regions labeled with fear can be avoided,

objects labeled with love can be pursued and protected,

those labeled with hate can be attacked, etc. Emotional value

judgments can also label tasks as costly or inexpensive, risky

or safe.

Definition: Priorities are value state-variables that provide

estimates of importance.

Priorities can be assigned to task frames so that BG planners

and executors can decide what to do first, how much effort

to spend, how much risk is prudent, and how much cost is

acceptable, for each task.

Definition: Drives are value state-variables that provide

estimates of need.

Drives can be assigned to the self frame, to indicate internal

system needs and requirements. In biological systems, drives

indicate levels of hunger, thirst, and sexual arousal. In me-

chanical systems, drives might indicate how much fuel is left,

how much pressure is in a boiler, how many expendables have

been consumed, or how much battery charge is remaining.

A. The Limbic System

In animal brains, value judgment functions are computed

by the limbic system. Value state-variables produced by the

limbic system include emotions, drives, and priorities. In

animals and humans, electrical or chemical stimulation of

specific limbic regions (i.e., value judgment modules) has been

shown to produce pleasure and pain as well as more complex

emotional feelings such as fear, anger, joy, contentment, and

despair. Fear is computed in the posterior hypothalamus.

Anger and rage are computed in the amygdala. The insula

computes feelings of contentment, and the septal regions

produce joy and elation. The perifornical nucleus of the

hypothalamus computes punishing pain, the septum pleasure,

and the pituitary computes the body’s priority level of arousal

in response to danger and stress [57].

The drives of hunger and thirst are computed in the limbic

system’s medial and lateral hypothalamus. The level of sexual

arousal is computed by the anterior hypothalamus. The control

of body rhythms, such as sleep-awake cycles, are computed

by the pineal gland. The hippocampus produces signals that

indicate what is important and should be remembered, or what

is unimportant and can safely be forgotten. Signals from the

hippocampus consolidate (i.e., make permanent) the storage of

sensory experiences in long term memory. Destruction of the

hippocampus prevents memory consolidation [58].

In lower animals, the limbic system is dominated by the

sense of smell and taste. Odor and taste provides a very simple

and straight forward evaluation of many objects. For example,

depending on how something smells, one should either eat

it, fight it, mate with it, or ignore it. In higher animals, the

limbic system has evolved to become the seat of much more

sophisticated value judgments, including human emotions and

appetites. Yet even in humans, the limbic system retains its

primitive function of evaluating odor and taste, and there

remains a close connection between the sense of smell and

emotional feelings.

Input and output fiber systems connect the limbic system

to sources of highly processed sensory data as well as to

high level goal selection centers. Connections with the frontal

cortex suggests that the value judgment modules are inti-

mately involved with long range planning and geometrical

reasoning. Connections with the thalamus suggests that the

limbic value judgment modules have access to high level

perceptions about objects, events, relationships, and situations;

for example, the recognition of success in goal achievement,

the perception of praise or hostility, or the recognition of

gestures of dominance or submission. Connections with the

reticular formation suggests that the limbic VJ modules are

also involved in computing confidence factors derived from

the degree of correlation between predicted and observed

sensory input. A high degree of correlation produces emotional

feelings of confidence. Low' correlation between predictions

and observations generates feelings of fear and uncertainty.

The limbic system is an integral and substantial part of

the brain. In humans, the limbic system consists of about 53

emotion, priority, and drive submodules linked together by 35

major nerve bundles [57].

B. Value State-Variables

It has long been recognized by psychologists that emotions

play a central role in behavior. Fear leads to flight, hate to

rage and attack. Joy produces smiles and dancing. Despair

produces withdrawal and despondent demeanor. All creatures

tend to repeat what makes them feel good, and avoid what

they dislike. All attempt to prolong, intensify, or repeat those

activities that give pleasure or make the self feel confident,

joyful, or happy. All try to terminate, diminish, or avoid those

activities that cause pain, or arouse fear, or revulsion.

It is common experience that emotions provide an eval-

uation of the state of the world as perceived by the sensory

system. Emotions tell us what is good or bad, what is attractive

or repulsive, what is beautiful or ugly, what is loved or hated,

what provokes laughter or anger, what smells sweet or rotten.
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what feels pleasurable, and what hurts.

It is also widely known that emotions affect memory.

Emotionally traumatic experiences are remembered in vivid

detail for years, while emotionally nonstimulating everyday

sights and sounds are forgotten within minutes after they are

experienced.

Emotions are popularly believed to be something apart

from intelligence—irrational, beyond reason or mathematical

analysis. The theory presented here maintains the opposite.

In this model, emotion is a critical component of biological

intelligence, necessary for evaluating sensory input, selecting

goals, directing behavior, and controlling learning.

It is widely believed that machines cannot experience emo-

tion, or that it would be dangerous, or even morally wrong to

attempt to endow machines with emotions. However, unless

machines have the capacity to make value judgments (i.e., to

evaluate costs, risks, and benefits, to decide which course of

action, and what expected results, are good, and which are bad)

machines can never be intelligent or autonomous. What is the

basis for deciding to do one thing and not another, even to

turn right rather than left, if there is no mechanism for making

value judgments? Without value judgments to support decision

making, nothing can be intelligent, be it biological or artificial.

Some examples of value state-variables are listed below,

along with suggestions of how they might be computed. This

list is by no means complete.

Good is a high level positive value state-variable. It may be

assigned to the entity frame of any event, object, or person.

It can be computed as a weighted sum, or spatiotemporal

integration, of all other positive value state-variables assigned

to the same entity frame.

Bad is a high level negative value state-variable. It can be

computed as a weighted sum, or spatiotemporal integration,

of all other negative value state-variables assigned to an entity

frame.

Pleasure: Physical pleasure is a mid-level internal positive

value state-variable that can be assigned to objects, events,

or specific regions of the body. In the latter case, pleasure

may be computed indirectly as a function of neuronal sensory

inputs from specific regions of the body. Emotional pleasure

is a high level internal positive value state-variable that can be

computed as a function of highly processed information about

situations in the world.

Pain: Physical pain is a low level internal negative value

state-variable that can be assigned to specific regions of the

body. It may be computed directly as a function of inputs from

pain sensors in specific regions of the body. Emotional pain is

a high level internal negative value state-variable that may be

computed indirectly from highly processed information about

situations in the world.

Success_observed is a positive value state-variable that

represents the degree to which task goals are met, plus the

amount of benefit derived therefrom.

Success_expected is a value state-variable that indicates the

degree of expected success (or the estimated probability of

success). It may be stored in a task frame, or computed

during planning on the basis of world model predictions. When

compared with success_observed it provides a base-line for

measuring whether goals were met on, behind, or ahead of

schedule; at, over, or under estimated costs; and with resulting

benefits equal to, less than, or greater than those expected.

Hope is a positive value state-variable produced when

the world model predicts a future success in achieving a

good situation or event. When high hope is assigned to a

task frame, the BG module may intensify behavior directed

toward completing the task and achieving the anticipated good

situation or event.

Frustration is a negative value state-variable that indicates

an inability to achieve a goal. It may cause a BG module to

abandon an ongoing task, and switch to an alternate behavior.

The level of frustration may depend on the priority attached to

the goal, and on the length of time spent in trying to achieve it.

Love is a positive value state-variable produced as a function

of the perceived attractiveness and desirability of an object or

person. When assigned to the frame of an object or person,

it tends to produce behavior designed to approach, protect, or

possess the loved object or person.

Hate is a negative value state-variable produced as a func-

tion of pain, anger, or humiliation. When assigned to the frame

of an object or person, hate tends to produce behavior designed

to attack, harm, or destroy the hated object or person.

Comfort is a positive value state-variable produced by the

absence of (or relief from) stress, pain, or fear. Comfort can be

assigned to the frame of an object, person, or region of space

that is safe, sheltering, or protective. When under stress or in

pain, an intelligent system may seek out places or persons with

entity frames that contain a large comfort value.

Fear is a negative value state-variable produced when the

sensory processing system recognizes, or the world model

predicts, a bad or dangerous situation or event. Fear may be

assigned to the attribute list of an entity, such as an object,

person, situation, event, or region of space. Fear tends to

produce behavior designed to avoid the feared situation, event,

or region, or flee from the feared object or person.

Joy is a positive value state-variable produced by the

recognition of an unexpectedly good situation or event. It is

assigned to the self-object frame.

Despair is a negative value state-variable produced by world

model predictions of unavoidable, or unending, bad situations

or events. Despair may be caused by the inability of the

behavior generation planners to discover an acceptable plan

for avoiding bad situations or events.

Happiness is a positive value state-variable produced by

sensory processing observations and world model predictions

of good situations and events. Happiness can be computed as

a function of a number of positive (rewarding) and negative

(punishing) value state-variables.

Confidence is an estimate of probability of correctness. A
confidence state-variable may be assigned to the frame of any

entity in the world model. It may also be assigned to the self

frame, to indicate the level of confidence that a creature has in

its own capabilities to deal with a situation. A high value of

confidence may cause the BG hierarchy to behave confidently

or aggressively.

Uncertainty is a lack of confidence. Uncertainty assigned

to the frame of an external object may cause attention to be
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directed toward that object in order to gather more informa-

tion about it. Uncertainty assigned to the self-object frame

may cause the behavior generating hierarchy to be timid or

tentative.

It is possible to assign a real nonnegative numerical scalar

value to each value state-variable. This defines the degree, or

amount, of that value state-variable. For example, a positive

real value assigned to “good” defines how good; i.e., if

e := “good” and 0 < e < 10 (5)

then, e = 10 is the “best” evaluation possible.

Some value state-variables can be grouped as conjugate

pairs. For example, good-bad, pleasure-pain, success-fail, love-

hate, etc. For conjugate pairs, a positive real value means the

amount of the good value, and a negative real value means

the amount of the bad value.

For example, if

e := “good-bad” and — 10 < e < -f-10

then e = 5 is good e = 6 is better e = 10 is best e = —4

is bad e = — 7 is worse e = — 10 is worst e = 0 is neither

good nor bad.

Similarly, in the case of pleasure-pain, the larger the positive

value, the better it feels. The larger the negative value, the

worse it hurts. For example, if

e := “pleasure-pain”

then e = 5 is pleasurable e = 10 is ecstasy e = — 5 is painful

e = -10 is agony e = 0 is neither pleasurable nor painful.

The positive and negative elements of the conjugate pair

may be computed separately, and then combined.

C. V7 Modules

Value state-variables are computed by value judgment func-

tions residing in VJ modules. Inputs to VJ modules describe

entities, events, situations, and states. VJ value judgment

functions compute measures of cost, risk, and benefit. VJ

outputs are value state-variables.

TheoreYn: The VJ value judgment mechanism can be de-

fined as a mathematical or logical function of the form

E = V(S) (6)

where E is an output vector of value state-variables, V
is a value judgment function that computes E given 5, S
is an input state vector defining conditions in the world

model, including the self. The components of 5 are entity

attributes describing states of tasks, objects, events, or regions

of space. These may be derived either from processed sensory

information, or from the world model.

The value judgment function V in the VJ module computes

a numerical scalar value (i.e., an evaluation) for each compo-

nent of fJ as a function of the input state vector S, E isa time

dependent vector. The compionents of E may be assigned to

attributes in the world model frame of various entities, events,

or states.

If time dependency is included, the function -I-

dt) =V{S{t)) may be computed by a set of equations of

the form

e{j, t + dt) = {k d/dt 4- 1)Z si2.t)w{ij) (7)

I

where e{j,t) is the value of the jth value state-variable in the

vector E at time t s{i,t) is the value of the zth input variable

at time t w{i,j) is a coefficient, or weight, that defines the

contribution of s{i) to e(j).

Each individual may have a different set of “values”, i.e., a

different weight matrix in its value judgment function V.

The factor {kd/dt -I- 1) indicates that a value judgment is

typically dependent on the temporal derivative of its input

variables as well as on their steady-state values. If /c > 1, then

the rate of change of the input factors becomes more important

than their absolute values. For k > 0, need reduction and

escape from pain are rewarding. The more rapid the escape,

the more intense, but short-lived, the reward.

Formula (8) suggests how a VJ function might compute

the value state-variable “happiness”:

happiness = (A: (f/df -I- 1) (success-expectation

-f hope-frustration

-f love-hate

+ comfort-fear

-I- joy-despair) (8)

where success, hope, love, comfort, joy are all positive value

state-variables that contribute to happiness, and expectation,

frustration, hate, fear, and despair are all negative value

state-variables that tend to reduce or diminish happiness.

In this example, the plus and minus signs result from -t-1

weights assigned to the positive-value state-variables, and

— 1 weights assigned to the negative-value state-variables. Of

course, different brains may assign different values to these

weights.

Expectation is listed in formula (8) as a negative state-

variable because the positive contribution of success is di-

minished if success_observed does not meet or exceed suc-

cess_expected. This suggests that happiness could be increased

if expectations were lower. However, when k > 0, the hope

reduction that accompanies expectation downgrading may be

just as punishing as the disappointments that result from

unrealistic expectations, at least in the short term. Therefore,

lowering expectations is a good strategy for increasing hap-

piness only if expectations are lowered very slowly, or are

already low to begin with.

Fig. 19 shows an example of how a VJ module might

compute pleasure-pain. Skin and muscle are known to contain

arrays of pain sensors that detect tissue damage. Specific

receptors for pleasure are not known to exist, but pleasure

state-variables can easily be computed from intermediate state-

variables that are computed directly from skin sensors.

The VJ module in Fig. 19 computes “pleasure-pain” as

a function of the intermediate state-variables of “softness”,

“warmth”, and “gentle stroking of the skin”. These interme-

diate state-variables are computed by low level SP modules.
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SENSORY VALUE WORLD
SENSORS PROCESSING JUDGEMENT MODEL

Fig. 19. How a VJ value judgment module might evaluate tactile and thermal

sensory input. In this example, pleasure-pain is computed by a VJ module

as a function of “warmth,” “softness,” and “gentle stroking” state-variables

recognized by an SP module, plus inputs directly from pain sensors in the

skin. Pleasure-pain value state-variables are assigned to pixel frames of the

world model map of the skin area.

“warmth” is computed from temperature sensors in the skin,

“softness” is computed as a function of “pressure” and “defor-

mation” (i.e., stretch) sensors, “gentle stroking of the skin” is

computed by a spatiotemporal analysis of skin pressure and

deformation sensor arrays that is analogous to image flow

processing of visual information from the eyes. Pain sensors

go directly from the skin area to the VJ module.

In the processing of data from sensors in the skin, all of

the computations preserve the topological mapping of the

skin area. Warmth is associated with the area in which the

temperature sensors are elevated. Softness is associated with

the area where pressure and deformation are in the correct

ratio. Gentle stroking is associated with the area in which the

proper spatiotemporal patterns of pressure and deformation are

observed. Pain is associated with the area where pain sensors

are located. Finally, pleasure-pain is associated with the area

from which the pleasure-pain factors originate. A pleasure-pain

state-variable can thus be assigned to the knowledge frames

of the skin pixels that lie within that area.

D. Value State-Variable Map Overlays

When objects or regions of space are projected on a world

map or egosphere, the value state-variables in the frames

of those objects or regions can be represented as overlays

on the projected regions. When this is done, value state-

variables such as comfort, fear, love, hate, danger, and safe

will appear overlaid on specific objects or regions of space.

BG modules can then perform path planning algorithms that

steer away from objects or regions overlaid with fear, or

danger, and steer toward or remain close to those overlaid with

attractiveness, or comfort. Behavior generation may generate

attack commands for target objects or persons overlaid with

hate. Protect, or care-for, commands may be generated for

target objects overlaid with love.

Projection of uncertainty, believability, and importance

value state-variables on the egosphere enables BG modules to

perform the computations necessary for manipulating sensors

and focusing attention.

Confidence, uncertainty, and hope state-variables may also

be used to modify the effect of other value judgments. For

example, if a task goal frame has a high hope variable but

low confidence variable, behavior may be directed toward the

hoped-for goal, but cautiously. On the other hand, if both hope

and confidence are high, pursuit of the goal may be much
more aggressive.

The real-time computation of value state-variables for vary-

ing task and world model conditions provides the basis for

complex situation dependent behavior [56].

XVI. Neural Computation

Theorem: All of the processes described previously for

the BG, WM, SP, and VJ modules, whether implicit or

explicit, can be implemented in neural net or connectionist

architectures, and hence could be implemented in a biological

neuronal substrate.

Modeling of the neurophysiology and anatomy of the brain

by a variety of mathematical and computational mechanisms

has been discussed in a number of publications [16], [27], [34],

[35] ,[55], [59]-[64]. Many of the submodules in the BG, WM,
SP, and VJ modules can be implemented by functions of the

form P=H{S). This type of computation can be accomplished

directly by a typical layer of neurons that might make up a

section of cortex or a subcortical nucleus.

To a first approximation, any single neuron, such as illus-

trated in Fig. 20, can compute a linear single valued function

of the form

N
p{k) = h{S) = ^^s{i)w{i,k) (9)

1=1

where p{k) is the output of the /cth neuron; S =
(s(l). s(2). .

.

. s(i) ^s{N)) is an ordered set of input

variables carried by input fibers defining an input vector;

W = (lu(1, k), w{2, k), . . . w{i. k), . . . w{N. k) is an ordered

set of synaptic weights connecting the N input fibers to the

A:th neuron; and h{S) is the internal product between the input

vector and the synaptic weight vector.

A set of neurons of the type illustrated in Fig. 20 can

therefore compute the vector function

P = H{S) (10)

where P — (p(l),p(2) p(k) p{L)) is an ordered set

of output variables carried by output fibers defining an output

vector.

Axon and dendrite interconnections between layers, and

within layers, can produce structures of the form illustrated

in Fig. 4. State driven switching functions produce structures

such as illustrated in Figs. 2 and 3. It has been shown how such

structures can produce behavior that is sensory-interactive,

goal-directed, and value driven.

The physical mechanisms of computation in a neuronal

computing module are produced by the effect of chemical acti-

vation on synaptic sites. These are analog parameters with time

constants governed by diffusion and enzyme activity rates.

Computational time constants can vary from milliseconds to

minutes, or even hours or days, depending on the chemicals
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Fig. 20. A neuron computes the scalar value p{k) as the inner product

of the input vector s(l).s(2), . .
.
,s(i), . .

.
,s{N) and the weight vector

U’(l, k). u'(2, k), . . . w{i. k), . .
. , w{N, k).

carrying the messages, the enzymes controlling the decay time

constants, the diffusion rates, and the physical locations of

neurological sites of synaptic activity.

The time dependent functional relationship between input

fiber firing vector S{t) and the output cell firing vector P{t)

can be captured by making the neural net computing module

time dependent

P{t + dt) = (11)

The physical arrangement of input fibers in Fig. 20 can also

produce many types of nonlinear interactions between input

variables. It can, in fact, be shown that a computational

module consisting of neurons of the type illustrated in Fig.

20 can compute any single valued arithmetic, vector, or

logical function, iF/THEN rule, or memory retrieval operation

that can be represented in the form P{t + dt) = H{S{t)).

By interconnecting P{t + dt) = H{S{t)) computational

modules in various ways, a number of additional important

mathematical operations can be computed, including finite

state automata, spatial and temporal differentiation and inte-

gration, tapped delay lines, spatial and temporal auto- and

crosscorrelation, coordinate transformation, image scrolling

and warping, pattern recognition, content addressable memory,

and sampled-data, state-space feedback control. [59]-[63].

In a two layer neural net such as a Perceptron, or a brain

model such as CMAC [27], [34], [35], the nonlinear function

P{t + dt) = H{Sit))

is computed by a pair of functions

A{r) = F{S{t)) (12)

Pit + dt) = GiA{T)) (13)

where S{t) represents a vector of firing rates s{i,t) on a set

of input fibers at time t, A{t) represents a vector of firing

rates a(j, t) of a set of association cells at time t = t + dt/2,

P{t -I- dt) represents a vector of firing rates pik,t -F dt) on a

set of output fibers at time t-\-dt,F is the function that maps

S into A, and G is the function that maps A into P.

The function F is generally considered to be fixed, serving

the function of an address decoder (or recoder) that transforms

the input vector S into an association cell vector A. The

firing rate of each association cell a(j, i) thus depends on the

input vector S and the details of the interconnecting matrix

of intemeurones between the input fibers and association cells

that define the function F. Recoding from S to A can enlarge

the number of patterns that can be recognized by increasing

the dimensionality of the pattern space, and can permit the

storage of nonlinear functions and the use of nonlinear decision

surfaces by circumscribing the neighborhood of generalization.

[34], [35].

The function G depends on the values of a set of synaptic

weights wii, k) that connect the association cells to the output

cells. The value computed by each output neuron p{k,t) at

time t is

pik, t + dt) =E aij)wij.k) (14)

]

where u;(j, /c)=synaptic weight from a{j) to p{k).

The weights wij,k) may be modified during the learning

process so as to modify the function G, and hence the function

H.
Additional layers between input and output can produce

indirect addressing and list processing functions, including tree

search and relaxation processes [16], [61]. Thus, virtually all of

the computational functions required of an intelligent system

can be produced by neuronal circuitry of the type known to

exist in the brains of intelligent creatures.

XVII. Learning

It is not within the scope of this paper to review of the

field of learning. However, no theory of intelligence can be

complete without addressing this phenomenon. Learning is

one of several processes by which world knowledge and task

knowledge become embedded in the computing modules of

an intelligent system. In biological systems, knowledge is also

provided by genetic and growth mechanisms. In artificial sys-

tems, knowledge is most often provided through the processes

of hardware engineering and software programming.

In the notation of (13), learning is the process of modifying

the G function. This in turn, modifies the P = H(S)
functions that reside in BG, WM, SP, and VJ modules. Thus

through learning, the behavior generation system can acquire

new behavioral skills, the world model can be updated, the
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sensory processing system can refine its ability to interpret

sensory input, and new parameters can be instilled in the value

judgment system.

The change in strength of synaptic weights w{j, k) wrought

by the learning process may be described by a formula of the

form

dw{j, k, t) = 9{t)a{j, t)p{k, t) (15)

where dw{j, k, t) is the change in the synaptic weight w(j, k, t)

between t and t + dt; g{t) is the learning gain at time t; a{j, t)

is the firing rate of association cell j at time t; and p{k, t) is

the firing rate of output neuron k at time t.

If g{t) is positive, the effect will be to reward or strengthen

active synaptic weights. If g{t) is negative, the effect will be

to punish, or weaken active synaptic weights.

After each learning experience, the new strength of synaptic

weights is given by

k,t + dt) = w{j, k, t) + dw{j, k, t). (16)

A. Mechanisms of Learning

Observations from psychology and neural net research sug-

gests that there are at least three major types of learning:

repetition, reinforcement, and specific error correction learn-

ing.

1) Repetition: Repetition learning occurs due to repetition

alone, without any feedback from the results of action. For

this type of learning, the gain function g is a small positive

constant. This implies that learning takes place solely on the

basis of coincidence between presynaptic and fwstsynaptic

activity. Coincident activity strengthens synaptic connections

and increases the probability that the same output activity will

be repeated the next time the same input is experienced.

Repetition learning was first hypothesized by Hebb, and is

sometimes called Hebbian learning. Hebb hypothesized that

repetition learning would cause assemblies of cells to form

associations between coincident events, thereby producing

conditioning. Hebbian learning has been simulated in neu-

ral nets, with some positive results. However, much more

powerful learning effects can be obtained with reinforcement

learning.

2) Reinforcement: Reinforcement learning incorporates feed-

back from the results of action. In reinforcement learning, the

learning gain factor g{t) varies with time such that it conveys

information as to whether the evaluation computed by the VJ

module was good (rewarding), or bad (punishing). g{t) is thus

computed by a VJ function of the form

g{t + dt) = V{S{t)) (17)

where S{t) is a time dependent state vector defining the object,

event, or region of space being evaluated.

For task learning

g{t + dt) = V{R{t)-IU{t)} (18)

where R{t) is the actual task results at time t, Rd{t) is the

desired task results at time t, R{t) - Rd{t) is the difference

between the actual results and the desired results.

Task learning may modify weights in BG modules that

define parameters in subtasks, or the weights that define

decision functions in BG state-tables, or the value of state-

variables in the task frame, such as task priority, expected

cost, risk, or benefit. Task learning may thus modify both

the probability that a particular task will be selected under

certain conditions, and the way that the task is decompKjsed

and executed when it is selected.

Attribute learning modifies weights that define state-

variables in the attribute list of entity or event frames in the

world model. Attribute learning was described earlier by (3)

and (4).

For attribute learning

g{t + dt) = Ks{i,t)[l - A',„(j,f)]V(attributej) (19)

where Ks{i,t) is the degree of confidence in the sensory

observation of the ith real world attribute at time t (See

formula (4)); Km{j,t) is the degree of confidence in the

prediction of the jth world model attribute at time t; and

V(attributej) is the importance of the jth world model

attribute.

In general, rewarding reinforcement causes neurons with

active synaptic inputs to increase the value or probability of

their output the next time the same situation arises, or through

generalization to increase the value or probability of their

output the next time almost-the-same situation arises. Every

time the rewarding situation occurs, the same synapses are

strengthened, and the output (or its probability of occurring)

is increased further.

For neurons in the goal selection portion of the BG modules,

the rewarding reinforcement causes rewarding goals to be

selected more often. Following learning, the probabilities

are increased of EX submodules selecting next-states that

were rewarded during learning. Similarly, the probabilities are

increased of PL and JA submodules selecting plans that were

successful, and hence rewarding, in the past.

For neurons in the WM modules, rewarding results follow-

ing an action causes reward expectations to be stored in the

frame of the task being executed. This leads to reward values

being increased on nodes in planning graphs leading up to the

rewarding results. Cost/benefit values placed in the frames of

objects, events, and tasks associated with the rewarding results

are also increased. As a result, the more rewarding the result

of behavior, the more the behavior tends to be repeated.

Reward reinforcement learning in the BG system is a

form of positive feedback. The more rewarding the task,

the greater the probability that it will be selected again.

The more it is selected, the more reward is produced and

the more the tendency to select it is increased. This can

drive the goal selection system into saturation, producing

effects like addiction, unless some other process such as

fatigue, boredom, or satiety produce a commensurate amount

of negative g{t) that is distributed over the population of

weights being modified.

Punishing reinforcement, or error correcting, learning occurs

when g{t) is negative, i.e., punishing. In biological brains,

error correction weakens synaptic weights that are active

immediately prior to punishing evaluations from the emotional
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system. This causes the neurons activated by those synapses

to decrease their output the next time the same situation arises.

Every time the situation occurs and the punishing evaluation

is given, the same synapses are weakened and the output (or

its probability of occurring) is reduced.

For neurons in the goal selection jxirtion of the BG modules,

error correction tends to cause punishing tasks to be avoided.

It decreases the probability of EX submodules selecting a

punishing next state. It decreases the probability of PL and

JA submodules selecting a punishing plan.

For neurons in the WM modules, punishment observed

to follow an action causes punishment state variables to be

inserted into the attribute list of the tasks, objects, events,

or regions of space associated with the punishing feedback.

Thus, punishment can be expected the next time the same

action is performed on the same object, or the same event

is encountered, or the same region of space is entered. Pun-

ishment expectations (i.e., fear) can be placed in the nodes

of planning graphs leading to punishing task results. Thus, the

more punishing the task, the more the task tends to be avoided.

Error correction learning is a form of negative feedback.

With each training experience, the amount of error is reduced,

and hence the amount of punishment. Error correction is

therefore self limiting and tends to converge toward a stable

result. It produces no tendencies toward addiction.

It does, however, reduce the net value of the synaptic

weight pool. Without some other process such as excitement,

or satisfaction, to generate a commensurate amount of reward

reinforcement, there could result a reduction in stimulus to

action, or lethargy.

3) Specific Error Correction Learning: In specific error cor-

rection, sometimes called teacher learning, not only is the

overall behavioral result g{t) known, but the correct or desired

response Pd{k,t) of each output neuron is provided by a

teacher. Thus, the precise error {p{k) — pdik)) for each neuron

is known. This correction can then be applied specifically to

the weights of each neuron in an amount proportional to the

direction and magnitude of the error of that neuron. This can

be described by

dw{j, k, t) = g{t)a{j, t){p{k, t) - pd{k, t)) (20)

where Pd{k,t) is the desired firing rate of neuron k M t and

-1 < g{t) < 0.

Teacher learning tends to converge rapidly to stable precise

results because it has knowledge of the desired firing rate for

each neuron. Teacher learning is always error correcting. The

teacher provides the correct response, and anything different

is an error. Therefore, g{t) must always be negative to correct

the error. A positive g{t) would only tend to increase the error.

If the value of g{t) is set to -1, the result is one-shot

learning. One-shot learning is learning that takes only one

training cycle to achieve perfect storage and recall. One-shot

teacher learning is often used for world model map and entity

attribute updates. The SP module produces an observed value

for each pixel, and this becomes the desired value to be

stored in a world model map. A SP module may also produce

observed values for entity attributes. These become desired

values to be stored in the world model entity frame.

Teacher learning may also be used for task skill learning

in cases where a high level BG module can act as a teacher

to a lower level BG module, i.e., by providing desired output

responses to specific command and feedback inputs.

It should be noted that, even though teacher learning may
be one-shot, task skill learning by teacher may require many
training cycles, because there may be very many ways that a

task can be perturbed from its ideal performance trajectory.

The proper response to all of these must be learned before the

task skill is fully mastered. Also, the teacher may not have

full access to all the sensory input going to the BG module

that is being taught. Thus, the task teacher may not always

be fully informed, and therefore may not always generate the

correct desired responses.

Since teacher learning is punishing, it must be accompanied

by some reward reinforcement to prevent eventually driving

synaptic weights to zero. There is some evidence, that both

reward reinforcement, and teacher learning, take place simul-

taneously in the cerebellum. Reward signals are thought to

be carried by diffuse noradrenergic fibers that affect many

thousands of neurons in the same way, while error correction

signals are believed to be carried by climbing fibers each of

which specifically targets a single neuron or a very small

groups of neurons [27].

It should be noted, however, that much of the evidence for

neuronal learning is ambiguous, and the exact mechanisms of

learning in the brain are still uncertain. The very existence

of learning in particular regions of the brain (including the

cerebellum) is still controversial [65]. In fact, most of the

interesting questions remain unanswered about how and where

learning occurs in the neural substrate, and how learning

produces all the effects and capabilities observed in the brain.

There are also many related questions as to the relationships

between learning, instinct, imprinting, and the evolution of

behavior in individuals and species.

XVlIl. Conclusion

The theory of intelligence presented here is only an outline.

It is far from complete. Most of the theorems have not

been proven. Much of what has been presented is hypothesis

and argument from analogy. The references cited in the

bibliography are by no means a comprehensive review of

the subject, or even a set of representative pointers into the

literature. They simply support specific points. A complete

list of references relevant to a theory of intelligence would fill

a volume of many hundreds of pages. Many important issues

remain uncertain and many aspects of intelligent behavior are

unexplained.

Yet, despite its incomplete character and hypothetical nature,

the proffered theory explains a lot. It is both rich ahd self

consistent, but more important, it brings together concepts

from a wide variety of disciplines into a single conceptual

framework. There is no question of the need for a unifying

theory. The amount of research currently underway is huge,

and progress is rapid in many individual areas. Unfortunately,

positive results in isolated fields of research have not coalesced

into commensurate progress toward a general understanding of
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the nature of intelligence itself, or even toward improved abil-

ities to build intelligent machine systems. Intelligent systems

research is seriously impeded because of the lack of a widely

accepted theoretical framework. Even a common definition of

terms would represent a major step forward.

The model presented here only suggests how the neural

substrate could generate the phenomena of intelligence, and

how computer systems might be designed so as to produce

intelligent behavior in machines. No claim is made that the

proposed architecture fully explains how intelligence actually

is generated in the brain. Natural intelligence is almost cer-

tainly generated in a great variety of ways, by a large number

of mechanisms. Only a few of the possibilities have been

suggested here.

The theory is expressed almost entirely in terms of explicit

representations of the functionality of BG, WM, SP, and VJ

modules. This almost certainly is not the way the brains of

lower forms, such as insects, generate intelligent behavior.

In simple brains, the functionality of planning, representing

space, modeling and perceiving entities and events is almost

surely represented implicitly, embedded in the specific con-

nectivity of neuronal circuitry, and controlled by instinct.

In more sophisticated brains, however, functionality most

likely is represented explicitly. For example, spatial informa-

tion is quite probably represented in world and egosphere

map overlays, and map pixels may indeed have frames.

One of the principal characteristics of the brain is that the

neural substrate is arranged in layers that have the topological

properties of maps. Output from one layer of neurons selects,

or addresses, sets of neurons in the next. This is a form a

indirect addressing that can easily give rise to list structures,

list processing systems, and object-oriented data structures.

Symbolic information about entities, events, and tasks may

very well be represented in neuronal list structures with the

properties of frames. In some instances, planning probably is

accomplished by searching game graphs, or by invoking rules

of the form IF (S)/THEN (P).

Implicit representations have an advantage of simplicity,

but at the expense of flexibility. Implicit representations have

difficulty in producing adaptive behavior, because learning

and generalization take place only over local neighborhoods

in state-space. On the other hand, explicit representations

are complex, but with the complexity comes flexibility and

generality. Explicitly represented information is easily modi-

fied, and generalization can take place over entire classes of

entities. Class properties can be inherited by subclasses, entity

attributes can be modified by one-shot learning, and small

changes in task or world knowledge can produce radically al-

tered behavior. With explicit representations of knowledge and

functionality, behavior can become adaptive, even creative.

This paper attempts to outline an architectural framework

that can describe both natural and artificial implementations of

intelligent systems. Hopefully, this framework will stimulate

researchers to test its hypotheses, and correct its assumptions

and logic where and when they are shown to be wrong. The

near term goal should be to develop a theoretical model with

sufficient mathematical rigor to support an engineering science

of intelligent machine systems. The long term goal should be

a full understanding of the nature of intelligence and behavior

in both artificial and natural systems.
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Introduction
An outline for a theory of intelligence has been published [1]. It defines intelhgence as the

ability to act appropriately in an uncertain environment, where appropriate action is that which
increases the probability of success, and success is the achievement of behavioral goals. The
intelligent system acts so as to maximize probability of success and minimize probability of failure.

Both goals and success criteria are generated in the environment external to the intelligent system.

At a minimum, intelligence requires the abilities to sense the environment, make decisions, and

control action. Higher levels of intelligence require the abihties to recognize objects and events,

store and use knowledge about the world, and to reason about and plan for the future. Advanced
forms of intelligence have the abilities to perceive and analyze, to plot and scheme, to choose

wisely and plan successfully in a complex, competitive, hostile world. The amount of intelligence

is determined by the computational power of the computing engine, the sophistication and elegance

of algorithms, the amount and quality of information and values, and the efficiency and reliability

of the system architecture. The amount of intelligence can grow through programming, learning,

and evolution. Intelligence is the product of natural selection, wherein more successful behavior is

passed on to succeeding generations of intelligent systems, and less successful behavior dies out.

Natural selection is driven by competition between individuals within a group, and groups within

the world.

The above theory of intelligence is expressed in terms of a reference model architecture for

real-time intelligent control systems based on the RCS (Real-time Control System) [2]. RCS
partitions the control problem into four basic elements: behavior generation (or task

decomposition), world modeling, sensory processing, and value judgment. It clusters these

elements into computational nodes that have responsibility for specific subsystems, and arranges

these nodes in hierarchical layers such that each layer has characteristic functionality and timing.

The RCS reference model architecture has a systematic regularity, and recursive structure that

suggests a canonical form.

This paper is divided into seven sections. Section 1 describes the evolution of the RCS
system through its various versions. Section 2 gives an example of RCS applied to a machining
workstation apphcation. Section 3 describes the timing of real-time task decomposition (planning

and execution) and sensory processing(sampling and integration) at the various layers in the RCS
hierarchy. Sections 4, 5, 6, and 7 define the functionality and contents of the Task Decomposition,
World Modeling, Sensory Processing, and Value Judgment modules respectively.

Section 1. Evolution of RCS

RCS has evolved through variety of versions over a number of years as understanding of

the complexity and sophistication of intelligent behavior has increased. The first implementation

was designed for sensory-interactive robotics by Barbera in the mid 1970’s [3]. In RCS-1, the

emphasis was on combining commands with sensory feedback so as to compute the proper

response to every combination of goals and states. The application was to control a robot arm with

a structured light vision system in visual pursuit tasks. RCS-1 was heavily influenced by
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biological models such as the Marr-Albus model of the cerebellum [4], and the Cerebellar Model
Arithmetic Computer (CMAC) [5]. CMAC can implement a function of the form

Commandt+i(i-l) = Hi(Commandt(i), Feedbackt(i))

where is a single valued function of many variables

i is an index indicating the hierarchical level

t is an index indicating time

CMAC thus became the reference model building block of RCS-1, as shown in Figure

1(a). A hierarchy of these building blocks was used to implement a hierarchy of behaviors such as

observed by Tinbergen [6] and others. CMAC becomes a state-machine when some of its outputs

are fed directly back to the input, so RCS-1 was implemented as a set of state-machines arranged

in a hierarchy of control levels. At each level, the input command effectively selects a behavior that

is driven by feedback in stimulus-response fashion. RCS-1 is thus similar in many respects to

Brooks subsumption architecture [7], except that RCS selects behaviors before the fact through

goals expressed in commands, rather than after the fact through subsumption.

The next generation, RCS-2, was developed by Barbera, Fitzgerald, Kent, and others for

manufacturing control in the NIST Automated Manufacturing Research Facility (AMRF) during the

early 1980's [8,9,10]. The basic building block of RCS-2 is shown in Figure 1(b). The H
function remained a finite state machine state-table executor. The new feature of RCS-2 was the

inclusion of the G function consisting of a number of sensory processing algorithms including

structured light and blob analysis algorithms. RCS-2 was used to define an eight level hierarchy

consisting of Servo, Coordinate Transform, E-Move, Task, Workstation, Cell, Shop, and Facility

levels of control. Only the first six levels were actually built. Two of the AMRF workstations

fully implemented five levels of RCS-2. The control system for the Army Field Material Handling
Robot (FMR)[1 1] was also implemented in RCS-2, as were the Army TMAP and TEAM semi-

autonomous land vehicle projects.
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Figure 1. The basic building blocks of the RCS control paradigm.

RCS-3 was designed for the NBS/DARPA Multiple Autonomous Undersea Vehicle

(MAUV) project [12] and was adapted for the NASA/NBS Standard Reference Model Telerobot

Control System Architecture (NASREM) [13] that was used in the specification and design of the

Next Generation Controller (NGC). The basic building block of RCS-3 is shown in Figure 1(c).

The principle new features introduced in RCS-3 are the World Model and the operator interface.

The inclusion of the World Model provides the basis for task planning and for model-based
sensory processing. This led to refinement of the task decomposition (TD) modules so that each
have a job assigner, and planner and executor for each of the subsystems assigned a job. This

corresponds roughly to Saridis’ three level control hierarchy [14].

RCS-4 is under current development by the NIST Robot Systems Division under

Department of Commerce funding for fundamental research in Intelligent Machine Systems. The
basic building block is shown in Figure 1(d). The principle new feature in RCS-4 is the explicit

representation of the Value Judgment (VJ) system. VJ modules provide to the RCS-4 control

system the type of functions provided to the biological brain by the limbic system. The VJ

3



modules contain processes that compute cost, benefit, and risk of planned actions; and that place

value on objects, materials, territory, situations, events, and outcomes. Value state-variables

define what goals are important, and what objects or regions should be attended-to, attacked,

defended, assisted, or otherwise acted upon. Value judgments, or evaluation functions, are an

essential part of any form of planning or learning. However, the evaluation functions are usually

not made explicit, or assigned to a separate module as in RCS-4. The application of value

judgments to intelligent control systems has been addressed by George Pugh [15]. The structure

and function of VJ modules are developed more completely developed in [1].

RCS-4 also uses the term behavior generation (BG) in place of the RCS-3 term task

decomposition (TD). The purpose of this change is to emphasize the degree of autonomous
decision making. RCS-4 is designed to address highly autonomous applications in unstructured

environments where high bandwidth communications are impossible, such as unmanned vehicles

operating on the battlefield, deep undersea, or on distant planets. These applications require

autonomous value judgments and sophisticated real-time perceptual capabilities. RCS-3 will

continue to be used for less demanding applications such as manufacturing, construction, or

telerobotics for near-space, or shallow undersea operations, where environments are more
structured and communication bandwidth to a human interface is less restricted.

Section 2. A Machining Workstation Example

Figure 3 illustrates how the RCS-3 system architecture can be applied to a specific

machining workstation consisting of a machine tool, a robot, an inspection machine, and a part

buffer. RCS-3 produces a layered graph of processing nodes, each of which contains a Task
Decomposition (TD), World Modeling (WM), and Sensory Processing (SP) module. These
modules are richly interconnected to each other by a communications system. At the lowest level,

communications are typically implemented through common memory or message passing between
processes on a single computer board. At middle levels, communications are typically

implemented between multiple processors on a backplane bus. At high levels, communications
can be implemented through bus gateways and local area networks. The global memory, or

knowledge database, and operator interface are not shown in Figure 3.

FromC^I
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Figure 3. A RCS-3 application of a machining workstation containing a machine
tool, part buffer, and robot with vision system.

Figure 3 illustrates the ability of RCS-3 to integrate discrete sensors such as microswitches

with more complex sensors such as cameras and resolvers. Discrete commands can be issued to

valves and fixtures, while continuous signals are provided to servoed actuators. Notice that in

some branches of the control tree, nodes at some levels may be absent. For example, in the case

of the part buffer, discrete commands at the Task level can be directly executed by the Servo level.

In the case of the part fixture, discrete commands issued from the robot E-Move level can be

executed by the Servo level. In these cases, the missing modules can be thought of as degenerate

computing nodes that produce unity gain pass-through of inputs to outputs.

The branching of the control tree (for example, between the camera and manipulator

subsystems of the robot), may depend on the particular algorithm chosen for decomposing a

particular task. The specifications for branching reside in the task frame (defined later) of the

current task being executed. Similarly, the specification for sharing information between WM
modules at a level also are task dependent. In Figure 3, the horizontal curved lines represent the

sharing of state information between subtrees in order to synchronize related tasks. The
information that must be shared is also dependent on the specific choice of task decomposition

algorithms defined in the task frame.

The functionahty of each level in the control hierarchy can be derived from the characteristic

timing of that level, and vice versa. For example, in a manufacturing environment, the following

hierarchical levels are becoming more or less standard.

Level 7 — Shop
The shop level schedules and controls the activities of one or more manufacturing cells for

an extended period on the order of 24 hours. (The specific timing numbers given in this example
are representative only, and may vary from application to application.) At the shop level, orders

are sorted into batches and commands are issued to the cell level to develop a production schedule

for each batch. At the shop level, the world model symbolic database contains names and
attributes of orders and the inventory of tools and materials required to fill them. Maps describe

the location of, and routing between, manufacturing cells.

Level 6—CeU
The cell level schedules and controls the activities of several workstations for about a one

hour look ahead. Batches of parts and tools are scheduled into workstations, and commands are

issued to workstations to perform machining, inspection, or material handling operations on
batches or trays of parts. The world model symbolic database contains names and attributes of

batches of parts and the tools and materials necessary to manufacture them. Maps describe the

location of, and routing between, workstations. (The Shop and Cell levels are above the levels

shown in the Figure 3 example.) The output from the cell level provides input to the workstation

level.

Level 5—Workstation

The workstation level schedules tasks and controls the activities within each workstation

with about a five minute planning horizon. A workstation may consist of a group of machines,
such as one or more closely coupled machine tools, robots, inspection machines, materials

ti'ansport devices, and part and tool buffers. Plans are developed and commands are issued to

equipment to operate on material, tools, and fixtures in order to produce parts. The world model
symbolic database contains names and attributes of parts, tools, and buffer trays in the

workstation. Maps describe the location of parts, tools, and buffer trays.

Level 4—Equipment task

The equipment level schedules tasks and controls the activities of each machine within a

workstation with about a 30 second planning horizon. (Tasks that take much longer may be
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broken into several 30 second segments at the workstation level.) Level 4 decomposes each

equipment task into elemental moves for the subsystems that make up each piece of equipment.

Plans are developed that sequence elemental movements of tools and grippers, and commands are

issued to move tools and grippers so as to approach, grasp, move, insert, cut, drill, mill, or

measure parts. The world model symbolic database contains names and attributes of parts, such as

their size and shape (dimensions and tolerances) and material characteristics (mass, color,

hardness, etc.). Maps consist of drawings that illustrate part shape and the relative positions of

part features.

Level 3—Elemental move (E-move)

The E-move level schedules and controls simple machine motions requiring a few seconds,

such GO-ALONG-PATH, MOVE-TO-POINT, MILL-FACE, DRILL-HOLE, MEASURE-
SURFACE, etc. (Motions that require significantly more time may be broken up at the task level

into several elemental moves.) Plans are developed and commands are issued that define safe path

waypoints for tools, manipulators, and inspection probes so as to avoid colhsions and
singularities, and assure part quality and process safety. The world model symbolic database

contains names and attributes of part features such as surfaces, holes, pockets, grooves, threads,

chamfers, burrs, etc. Maps consist of drawings that illustrate feature shape and the relative

positions of feature boundaries.

Level 2—Primitive

The primitive level plans paths for tools, manipulators, and inspection probes so as to

minimize time and optimize performance. It computes tool or gripper acceleration and deceleration

profiles taking into consideration dynamical interaction between mass, stiffness, force, and time.

Planning horizons are on the order of 300 milliseconds. The world model symbolic database

contains names and attributes of linear features such as lines, trajectory segments, and vertices.

Maps (when they exist) consist of perspective projections of hnear features such as edges, lines or

of tool or end-effector trajectories.

Level 1—Servo level

The servo level transforms commands from tool path to joint actuator coordinates.

Planners interpolate between primitive trajectory points with a 30 millisecond look ahead.

Executors servo individual actuators and motors to the interpolated trajectories. Position, velocity,

or force servoing may be implemented, and in various combinations. Commands that define

actuator torque or power are output every 3 milhseconds (or whatever rate is dictated by the

machine dynamics and servo performance requirements). The servo level also controls the output

drive signals to discrete actuators such as relays and solenoids. The world model symbolic

database contains values of state variables such as joint positions, velocities, and forces, proximity

sensor readings, position of discrete switches, condition of touch probes, as well as image
attributes associated with camera pixels. Maps consist of camera images and displays of sensor

readings.

At the Servo and Primitive levels, the command output rate is perfectly regular. At the E-

Move level and above, the command output rates typically are irregular because they are event

driven.

Section 4. Organization and Timing in the RCS Hierarchy

Figure 4 summarizes the relationship in an RCS-4 system between the organizational

hierarchy that is defined by the command tree, the computational hierarchy that is defined along

each chain of command, and the behavioral hierarchy that is produced in state-space as a function

of time. The behavioral hierarchy consists of state/time trajectories that are produced by
computational modules executing tasks in real-time.
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Figure 4. The relationship in RCS-4 between the organizational hierarchy of subsystems, the

computational hierarchy of computing modules, and behavioral hierarchy of state trajectories that

result as the computing modules execute tasks.

Levels in the RCS command hierarchy are defined by temporal and spatial decomposition

of goals and tasks into levels of resolution, as well as by spatial and temporal integration of

sensory data into levels of aggregation. Temporal resolution is manifest^ in terms of loop

bandwidth, sampling rate, and state-change intervals. Temporal span is measured in length of

historical traces and planning horizons. Spatial resolution is manifested in the resolution of maps
and grouping of elements in subsystems. Spatial span is measured in range of maps and the span

of control.

Figure 5 is a timing diagram that illustrates the temporal relationships in a RCS hierarchy

containing seven levels of task decomposition and sensory processing. The samphng rate, the

command update rate, the rate of subtask completion, and the rate of subgoal events, increases at

the lower levels of the hierarchy, and decreases at upper levels of the hierarchy. The particular

numbers shown in Figure 5 simply illustrate the relative timing between levels. Specific timing

requirements are dependent on specific machines and applications.
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Figure 5. A timing diagram illustrating the temporal flow of activity in the task

decomposition and sensory processing systems.
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A fundamental principle of RCS-3 and 4 is that planning goes on simultaneously and
continuously at all levels. At each level, planners periodically generate plans containing, on
average, about ten steps. At each successive level, the first one or two steps in the current plan

from the level above are further decomposed into subplans with an order of magnitude more
resolution, and an order of magnitude less span in time and space. As a result, the average period

between task commands decreases by about an order of magnitude at each lower level.

Replanning is done either at cyclic intervals, or whenever emergency conditions arise. The
cychc replanning interval may be as short as the average command update interval at each level, or

about about ten percent of the planning horizon at each level. This allows the real-time planner to

generate a new plan about as often as the executor generates a new output command. Less frequent

replanning will reduce the computational speed requirements for real-time planning, but may also

reduce control system effectiveness. Emergency replanning begins immediately upon the detection

of an emergency condition.

Task execution also goes on simultaneously and continuously at all levels. At each level,

executors periodically sample feedback, compare it with the current plan, and issue output

commands to correct for deviations between plans and observations. At each sampling period

feedback is tested for emergency conditions, and preplanned emergency recovery routines are

invoked immediately upon detection of any emergency condition. This allows the system to react

to emergencies within a single control cycle with preplanned recovery routines that bridge the

tempor^ gap between when an emergency is detected and when the appropriate planners have new
plans ready for execution.

As can be seen in Figure 5, there exists a duality between the task decomposition and the

sensory processing hierarchies. At each hierarchical level a task can be decomposed into a set of

subtasks at the next lower level. At each level a sensory event can be composed from a sequence
of events at the next lower level, a recognized entity can be composed from a group of subentities

at the next lower level. At each level, the sensory processing modules look back into the past

about as far the planner modules look forward into the future. At each level, future plans have
about the same detail as historical traces.

Section 5. Task Decomposition

Each behavior generation (BG), or task decomposition (TD), module at each level consists

of three sublevels: Job Assignment, Planning, and Execution.

The Job Assignment sublevel—^JA submodule
The JA submodule is responsible for spatial task decomposition. It partitions the input task

command into N spatially distinct jobs to be performed by N physically distinct subsystems,

where N is the number of subsystems currently assigned to the TD module.
The JA submodule is also responsible for assigning tools and allocating physical resources

(such as arms, hands, sensors, tools, and materials) to each of its subordinate subsystems for their

use in performing their assigned jobs.

The Planner sublevel—PL(j) submodules, j
= 1, 2, . . ,

N
For each of the N subsystems, there exists a planner submodule PL(j). Each planner

submodule is responsible for decomposing the job assigned to its subsystem into a temporal

sequence of planned subtasks. Each planner submodule is also responsible for resolving conflicts

and mutual constraints between hypothesized plans of submodules.

The Executor sublevel—EX(j) submodules
There is an executor EX(j) for each planner PL(j). The executor submodules are

responsible for successfully executing the plan state-graphs generated by their respective planners.

When an executor is informed by the world model that a subtask in its current plan is successfully

completed, the executor steps to the next subtask in that plan. When all the subtasks in the current

plan are successfully executed, the executor steps to the first subtask in the next plan. If the
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feedback indicates the failure of a planned subtask, the executor branches immediately to a

preplanned emergency subtask. Its planner simultaneously begins work selecting or generating an

error recovery sequence which can be substituted for the former plan which failed. Output
subcommands produced by executors at level i become input commands to job assignment

submodules in TD modules at level i-1.

Planners PL(j) constantly operate in the future, each generating a plan to the end of its

planning horizon. The executors EX(j) always operate in the present, at time t=0, constantly

monitoring the current state of the world reported by feedback from the world model.

At each level, each executor submodule closes a reflex arc, or servo loop, and the executor

submodules at the various hierarchical levels form a set of nested servo loops. The executor loop

bandwidth decreases about an order of magnitude at each higher level. Each level has a dominant
frequency of execution. The actual frequency is dictated by the physical equipment and the

application.

Task Knowledge
Fundamental to task decomposition is the representation and use of task knowledge. A

task is a piece of work to be done, or an activity to be performed. For any TD or BG module,
there exists a set of tasks that that module knows how to do. Each task in this set can be assigned

a name. The task vocabulary is the set of task names assigned to the set of tasks each TD or BG
module is capable of performing.

Knowledge of how to perform a task may be represented in a frame data stmcture. An
example task frame is:

TASKNAME Name of the task

Goal

Object

Parameters

Agents

Requirements

Procedures

Event or condition that successfully terminates the task

Identification of thing to be acted upon

Priority

Status (e.g. active, waiting, inactive)

Timing (e.g. speed, completion time)

Coordinate system in which task is expressed

Stiffness matrices

Tolerances

Identification of subsystems that will perform the task

Feedback information required from the world model during the task

Tools, time, resources, and materials needed to perform the task

Enabling conditions that must be satisfied to begin or continue the task

Disabling conditions that will interrupt or abort the task activity

Pre-computed plans or scripts for executing the task

Planning algorithms

Functions that may be called

Emergency procedures for each disabhng condition

Figure 6. A typical task frame

The name of the task is a string that identifies the type of activity to be performed. The
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goal may be a vector that defines an attractor value, set point, or desired state to be achieved by the

task. The goal may also be a map, graph, or geometric data stmcture that defines a desired "to-be"

condition of an object, or arrangement of components.

The requirements section includes information required during the task. This may consist

of a list of state variables, maps, and/or geometrical data stmctures that convey actual, or "as-is"

conditions that currently exist in the world. Requirements may also include resources, tools,

materials, time, and conditions needed for performing the task.

The procedure section contains either a set of pre-computed plans or scripts for

decomposing the task, or one or more planning algorithms for generating a plan, or both. For
example, the procedure section may contain a set of IF/THEN mles that select a plan appropriate to

the “as-is” conditions reported by the world model. Alternatively, the procedure section may
contain a planning algorithm that computes the difference between "to-be" and "as-is" conditions.

This difference may then be treated as an error that the task planner attempts to reduce, or null

through “Means/Ends Analysis” or A* search. Each subsystem planner would then develop a

sequence of subtasks designed to minimize its subsystem error over an interval from the present to

its planning horizon. In either case, each executor would act as a feedback controller, attempting

to servo its respective subsystem to follow its plan. The procedure section also contains

emergency procedures that can be executed immediately upon the detection of a disabling

condition.

In plans involving concurrent job activity by different subsystems, there may be mutual
constraints. For example, a start-event for a subtask activity in one subsystem may depend on the

goal-event for a subtask activity in another subsystem. Some tasks may require concurrent and
cooperative action by several subsystems. This requires that both planning and execution of

subsystem plans be coordinated. (The reader should not infer from this discussion or others

throughout this paper, that all these difficult problems have been solved, at least not for the general

case. Much remains unknown that will require extensive further research. The RCS architecture

simply provides a framework wherein each of these problems can be explicitly represented and
input/output interfaces can be defined. In several RCS designs, human operators are an integral

part of some computational nodes, so that tasks that cannot yet be done automatically are done
interactively by humans. In the NIST Automated Deburring and Chamfering System workstation,

for example, the tasks of the fixturing subsystem are performed by a human operator.)

The library of task frames that reside in each TD module define the capability of the TD
module. The names of the task frames in the library define the set of task commands that TD
module will accept. There, of course, may be several alternative ways that a task can be
accomplished. Alternative task or job decompositions can be represented by an AND/OR graph in

the procedure section of the task frame.

The agents, requirements, and procedures in the task frame specify for the TD module
"how to do" commanded tasks. This information is a-priori resident in the task frame library of

the TD module. The goal, object, and parameters specify “what to do”, “on what object”, “when”,
“how fast”, etc. Figure 7 illustrates the instantiation of a task frame residing in the TD module
library by a task command. When a TD module inputs a task command, it searches its library of

task frames to find a task name that matches the command name. Once a match is found, the goal,

object, and parameter attributes from the command are transferred into the task frame. This

activates the task frame, and as soon as the requirements listed in the task frame are met, the TD
module can begin executing the task plan that carries out the job of task decomposition.

Task knowledge is typically difficult to discover, but once known, can be readily used and
duplicated. For example, the proper way to mill a pocket, drill a hole, or fixture a part may be

difficult to derive from first principles. However, once such knowledge is known and represented

in a task frame, it is relatively easy to transform into executable code.

11



TD Module
Task Frame Library

Match
Command Frame

KT A ATI?
IX AiVlJ1

Object

Parameters

Agents

Requirements

Procedures (Plans)

Effects

Supplied by command

Specifies what to do

Vocabularly of commands matches
library of task frames

Resident in TD module

Specifies how to do tasks

Library of task frames defines

TD module capability

Figure 7. The relationship between commands and task frames.

Section 5. World Modeling
The world model is an intelligent system's internal representation of the external world. It

is the system's best estimate of objective reality. It acts as a buffer between sensory processing

and task decomposition. This enables the task decomposition system to act on information that

may not be immediately or directly observable by sensors, and enables the sensory processing

system to do recursive estimation based on a number of past sensory measurements. The world
model is hierarchically structured and distributed such that there is a world model (WM) module
with Knowledge Database (KD) in each node at every level of the RCS control hierarchy. The
KD forms a passive, hierarchically structured, distributed data store. TheWM provides the

operations that act upon the KD. At each level, theWM and value judgment (VJ) modules
perform the functions illustrated in Figure 8 and described below.
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Figure 8. Functions performed by the WM module. 1) Update the knowledge database with

recognized entities. 2) Predict sensory data. 3) Answer "What is?" queries from task executor and
return current state of world. 4) Answer"What if?" queries from task planner and predict results

for evaluation.

1) WM modules maintain the KD knowledge database, keeping it current and consistent.

In this role, the WM modules perform the functions of a database management system. They
update KD state estimates based on correlations and differences between world model predictions

and sensory observations at each hierarchical level. TheWM modules enter newly recognized

entities, states, and events into the KD database, and delete entities and states determined by the

sensory processing modules to no longer exist in the external world. TheWM modules also enter

estimates, generated by the VJ modules, of the reliability ofKD state variables. Believability or

confidence factors are assigned to many types of state variables.

2) WM modules generate predictions of expected sensory input for use by the appropriate

sensory processing SP modules. In this role, aWM module performs the functions of a graphics

engine, or state predictor, generating predictions that enable the sensory processing system to

perform correlation and predictive filtering. WM predictions are based on the state of the task and

estimated states of the external world. For example in vision, aWM module may use the

information in an object frame to generate predicted images which can be compared pixel by pixel,

or entity by entity, with observed images.

3) WM modules answer "What is?" questions asked by the planners and executors in

corresponding BG modules. In this role, theWM modules perform the function of database
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query processors, question answering systems, or data servers. World model estimates of the

current state of the world are used by BG or TD module planners as a starting point for planning.

Current state estimates are also used by BG or TD module executors for servoing and branching on
conditions.

4) WM modules answer "What if?" questions asked by the planners in the corresponding

level BG or TD modules. In this role, the WM modules perform the function of simulation by
generating expected status resulting from actions hypothesized by the planners. Results predicted

byWM simulations are sent to value judgment VJ modules for evaluation. For each BG or TD
hypothesized action, aWM prediction is generated, and a VJ evaluation is returned to the BG or

TD planner. This BG-WM-VJ loop enables BG planners to select the sequence of hypothesized

actions producing the best evaluation as the plan to be executed.

The Knowledge Database
The world model knowledge database (KD) includes both a-priori information which is available to

the intelhgent system before action begins, and a-posterior knowledge which is gained from
sensing the environment as action proceeds. The KD represents information about space, time,

entities, events, states of the world, and laws of nature. Knowledge about space is represented in

maps. Knowledge about entities, events, and states is represented in lists and frames. Knowledge
about the laws of physics, chemistry, optics, and the rules of logic and mathematics is represented

in the WM functions that generate predictions and simulate results of hypothetical actions. Laws of

nature may be represented as formulae, or as IF/THEN rules of what happens under certain

situations, such as when things are pushed, thrown, or dropped.

The world model also includes knowledge about the intelhgent system itself, such as the

values assigned to goal priorities, attribute values assigned to objects, and events; parameters

defining kinematic and dynamic models of robot arms or machine tool stages; state variables

describing internal pressure, temperature, clocks, fuel levels, body fluid chemistry; the state of ah
the currently executing processes in each of the TD, SP, WM, and VJ modules; etc.

The correctness and consistency of world model knowledge is verified by sensors and
sensory processing SP mechanisms that measure differences between world model predictions and
sensory observations. These differences may be used by recursive estimation algorithms to keep
the world model state variables the best estimates of the state of the world. Attention algorithms

may be used to limit the number of state variables that must be kept up-to-date and any one time.

Information in the world model knowledge database may be organized as state variables,

system parameters, maps, and entity frames.

State variables

State variables define the current value of entity and system attributes. A state variable may
define the state of a clock, the position, orientation, and velocity of a gripper, the position,

velocity, and torque of an actuator, or the state of a computing module.

System parameters
System parameters define the kinematic and dynamic characteristics of the system being

controlled, e.g., the inertia of objects, machines, and tools. System parameters may also define

coordinate transforms necessary to transform commands and sensory information from one
working coordinate system to another.

Entity Frames
An entity frame is a symbolic list structure, in which the ENTITY NAME is the list head,

and in which knowledge about the entity is stored as attribute-value pairs (or attribute-list pairs).

The world model contains a list of all the entities that the intelligent system knows about. A subset

of this list is the set of current entities known to be present in any given situation. A subset of the

list of current entities is the set of entities of attention. These are the entities that the system is

currently acting upon, or is planning to act upon momentarily.

There are two types of entities: generic and specific. A generic entity is an example of a
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class of entities. A generic entity frame contains the attributes of its class. A specific entity is a

particular instance of an entity. A specific entity frame inherits the attributes of its class.

Different levels of entities exist at different levels of the hierarchy. At level 1, entity frames

describe points; at level 2, entity frames describe lines and vertices; at level 3, they describe

surfaces; at level four, objects; and at level 5, groups; at level 6 and above, entity frames describe

higher order groups.

An example of an entity frame is shown in Figure 9.

ENTITY NAME
kind

type

level

position

orientation

coordinates

dynamics
trajectory

geometry

subentities

parent entity

properties

value

due date

— part id#, lot#, etc.

— model#
— generic or specific

— point, line, surface, object, group
— map location of center of mass (time, uncertainty)

— coordinate axes directions (time, uncertainty)

— coordinate system of map
— velocity,acceleration (time, uncertainty)

— sequence of positions (time, uncertainty)

— center of gravity (uncertainty)

axis of symmetry (uncertainty)

size (uncertainty)

boundaries (uncertainty)

— pointers to lower level entities that make up named entity

— pointer to higher level entity of which named entity is part

— mass, color, hardness, smoothness, etc.

— sunk cost, value at completion
— date required

Figure 9. An example entity frame

Maps
Maps describe the distribution of entities in space. Each point, or pixel, on a map may

have a pointer that points to the name of the entity that projects to that point on the map. A pixel

may also have one or more attribute-value pairs. For example, a map pixel may have a brighmess,

or color (as in an image), or an altitude (as in a topographic map). A map may also be represented

by a graph that indicates routes between locations, for example, the routes available to robot carts

moving between workstations.

Any specific map is defined in a particular coordinate frame. There are three general types

of map coordinate frames that are important: world coordinates, object coordinates, and
egospheres. An egosphere is a spherical coordinate system with the intelligent system at the origin

and properties of the world are projected onto the surface of the sphere. World, object, and
egosphere coordinate frames are discussed more extensively in [1].

Map-Entity Relationships
Map and entity representations may be cross referenced in the world model as shown in

Figure 10. For example, each entity frame may contain a set of geometrical and state parameters

that enables the world model to project that entity onto a map. The world model can thus compute
the set of egosphere or world map pixels covered by an entity. By this means, entity parameters

can be inherited by map pixels, and hence entity attributes can be overlaid on maps.
Conversely, each pixel on a map may have pointers to entities covered by that pixel. For

example, a pixel may have a pointer to a point entity whose frame contains the project^ distance or

range to the point covered by that pixel. Each pixel may also have a pointer to a line entity frame
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indicating the position and orientation of an edge, line, or vertex covered by the pixel. Each pixel

may also have a pointer to a surface entity indicating position and orientation of a surface covered

by the pixel. Each pixel may have a pointer to an object entity indicating the name of the object

covered, and a pointer to a group entity indicating the name of the group covered.

The world model thus provides cross referencing between pixel maps and entity frames.

Each level of world modeling can thus predict what objects wiU look like to sensors, and each level

of sensory processing can compare sensory observations with world model predictions. (The
reader should not infer from this discussion that such a cross-coupled systems have been fully

implemented, or that it is even well understood how to implement such systems for real-time

operations. What is described is the kind of cross-coupled system that will be necessary in order

to achieve truly intelligent robotic systems. It seems likely that special purpose hardware and
firmware will need to be developed. Clearly, much additional research remains to be done before

these problems are solved. The RCS reference model architecture simply defines how such

processes should be organized and what interfaces need to be defined.
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Maps
( iconic arrays, graphs)

Entities

( symbolic lists)

Figure 10. Map-entity relationships in a world model for manufacturing. The world model
provides processes by which symbolic entity frames can be transformed into maps, and
vice versa.

An example of a knowledge database for an intelligent robot in a manufacturing workstation such

as shown in Figure 3 might be the following:
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Level 1

State Variables

State clock and sync signals

State vector that defmes the best estimate of the position, velocity, and force of each joint

actuator.

Estimated time or distance to nearest point entity contact

System parameters

Joint limit margin for each actuator

Gravity compensation matrix

Inertia matrix

Forward and inverse kinematic transform from end-effector to joint coordinates

Forward and inverse transform from sensor egosphere to end-effector egosphere

Entity frames

Point entity frames for entities of attention

Pixel frames for sensor egosphere map pixels

Maps
Sensor egosphere map overlaid with projections of point entities of attention

Level 2
State variables

State clock and sync signals

State vector defining the best estimate of load or tool pose, velocity, force, etc.

Estimated time or distance to nearest linear entity contact

Singularity clearance margins

System parameters

Forward and inverse force and velocity coordinate transform from equipment to end-

effector coordinates

Forward and inverse transform from end-effector egosphere to equipment centered inertial

egosphere coordinates

Manipulator dynamic model
Load dynamic model
Limits of travel in coordinate system of command
Positions of singularities

Position, velocity, and force limits

Entity frames

Linear entity frames (edges, lines, trajectories, vertices, etc.) for entities of attention

Maps
Tool or end-effector egosphere map overlaid with projection of linear entities of attention

and their trajectories (observed and planned)

Level 3

State variables

State clock and sync signals

Best fit trajectories for observed poses, velocities, and forces of load or tool

Estimated time or distance to nearest surface entity contact

Estimated minimum clearance for singularities and obstacle surfaces

System parameters

Forward and inverse transform from equipment centered inertial egosphere coordinates to

part coordinates

Manipulator geometry and dynamic model
Load geometry and dynamic model
Limits of travel in coordinate system of command
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Position, velocity, and force limits

Cost/benefit function parameters for analysis of hypothesized path plans

Entity frames

Surface entity frames for entities of attention

Maps
Equipment centered inertial egosphere map overlaid with projection of surface entities of

attention and their swept volumes (observed and planned)

Level 4
State variables

State clock and sync signals from other equipment

Best estimate observed degree of task completion

State of task enabling and disabling conditions

Predicted results of plan

System parameters

Task enabling and disabhng conditions

Forward and inverse transform from equipment centered inertial egosphere to equipment
centered world coordinates

Equipment geometry and dynamic model
Part and tool geometry and dynamic model
Limits of travel in coordinate system of command
Cost/benefit function for evaluation of plan results

Entity frames

Object entity frames for objects of attention (trays, fixtures, tool racks, free space, parts,

grippers, tools, fasteners, etc.)

Maps
Equipment centered world map overlaid with projections of objects of attention; also

overlaid with projections of planned sequence of E-moves

Level 5

State variables

State clock and sync signals from other equipment
Observed degree of task completion

State of task enabling and disabling conditions

Predicted results of hypothesized plan

System parameters

Forward and inverse transforms from workstation to equipment centered world coordinates

Task enabling and disabling conditions

Workstation task timing model
Cost/benefit evaluation function for hypothesized plan results

Entity frames

Workstation equipment entity frames
Group entity frames (objects grouped in trays, buffers, tool racks, fixtures, etc.) for groups
of attention

Maps
Workstation centered world map overlaid with projections of equipment entities and group

entities of attention; also overlaid with planned sequence of robot task

Additional discussion of RCS world models for robots can be found in [16].

Section 6. Sensory Processing
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Sensory processing is the mechanism of perception. Perception is the establishment and
maintenance of correspondence between the internal world model and the external real world. The
function of sensory processing is to extract information about entities, events, states, and
relationships in the external world, so as keep the world model accurate and up to date.

Map Updates
World model maps may be updated by sensory measurement of points, edges, and

surfaces. Such information may be derived from vision, touch, sonar, radar, or laser sensors.

The most direct method of measuring points, edges, and surfaces is through touch. In the

manufacturing environment, touch probes are used by coordinate measuring machines to measure
the 3-D position of points. Touch probes on machine tools and tactile sensors on robots can be
used for making similar measurements. From such data, sensory processing algorithms can
compute the orientation and position of surfaces, the shape of holes, the distance between
surfaces, and the dimensions of parts.

Other methods for measuring points, edges, and surfaces include stereo vision,

photogrammetry, laser ranging, structured tight, image flow, acoustic ranging, and focus-based

optical probes. Additional information about surface position and orientation may also be
computed from shading, shadows, and texture gradients. Each of these various methods produce
different accuracies and have differing computational and operational requirements.

Recognition and Detection
Recognition is the establishment of a one-to-one match, or correspondence, between a real

world entity and a world model entity . The process of recognition may proceed top-down, or

bottom-up, or both simultaneously. For each entity in the world model, there exists a frame filled

with information that can be used to predict attributes of corresponding entities observed in the

world. The top-down process of recognition begins by hypothesizing a world model entity and
comparing its predicted attributes with those of the observed entity. When the similarities and
differences between predictions from the world model and observations from sensory processing

are integrated over a space-time window that covers an entity, a matching, or cross-correlation

value is computed between the entity and the model. If the correlation value rises above a selected

threshold, the entity is said to be recognized. If not, the hypothesized entity is rejected and another

tried.

The bottom-up process of recognition consists of applying filters and masks to incoming
sensory data, and computing image properties and attributes. These may then be stored in the

world model, or compared with the properties and attributes of entities already in the world model.

Both top-down and bottom-up processes proceed until a match is found, or the list of world model
entities is exhausted. Many perceptual matching processes may operate in parallel at multiple

hierarchical levels simultaneously.

If a SP module recognizes a specific entity, theWM at that level updates the attributes in the

frame of that specific WM entity with information from the sensory system.

If the SP module fails to recognize a specific entity, but instead achieves a match between
the sensory input and a generic world model entity, a new specific WM entity will be created with a

frame that initially inherits the features of the generic entity. Slots in the specific entity frame can

then be updated with information from the sensory input.

If the SP module fails to recognize either a specific or a generic entity, the WM may create

an "unidentified" entity with an empty frame. This may then be filled with information gathered

from the sensory input.

When an unidentified entity occurs in the world model, the behavior generation system

may (depending on other priorities) select a new goal to <identlfy the unidentified entity>. This

may initiate an exploration task that positions and focuses the sensor systems on the unidentified

entity, and possibly even probes and manipulates it, until a world model frame is constructed that

adequately describes the entity. The sophistication and complexity of the exploration task depends
on task knowledge about exploring things. Such knowledge may be very advanced and include

20



sophisticated tools and procedures, or very primitive. Entities may, of course, simply remain

labeled as "unidentified,” or “unexplained.”

Detection of events is analogous to recognition of entities. Observed states of the real

world are compared with states predicted by the world model. Similarities and differences are

integrated over an event space-time window, and a matching, or cross-correlation value is

computed between the observed event and the model event. When the cross-correlation value rises

above a given threshold, the event is detected.

Sensory Processing Modules
The Sensory Processing (SP) modules are responsible for gathering data from sensors,

filtering and integrating this data, and interpreting it. Noise rejection techniques such as Kalman
filtering are implemented here, as well as feature extraction, pattern recognition, and image
understanding. At the upper levels of the hierarchy, more abstract interpretations of sensory data

are performed and inputs from a variety of sensor systems are integrated over space and time into a

single interpretation of the the external world.

Each SP module at each level consists of five types of operations: 1) Coordinate

transformation, 2) Comparison, 3) Temporal Integration, 4) Spatial Integration, and 5)

Recognition/Detection, as shown in Figure 11.

1)

Coordinate transformation

Before a world model estimated variable can be compared with an observed sensory

variable, the estimated and observed variables must be registered with each other in the same
coordinate system. Sensory variables are most often represented in sensor egosphere coordinates.

World model estimates may be represented in a variety of coordinate frames, each of which have
certain computational advantages. Among these are head egosphere, inertial egosphere, part or

tool egosphere, or world coordinates with origins at convenient points.

2)

Comparison
Each comparator matches an observed sensory variable (such as an image pixel attribute)

with a world model prediction of that variable. The predicted variable may be subtracted from the

observed, or multiplied by it, to obtain a measure of similarity (correlation) and difference

(variance) between the observed variable and the predicted variable. Similarities indicate the degree

to which theWM predictions are correct, and hence are a measure of the correspondence between
the world model and reahty. Differences indicate a lack of correspondence between world model
predictions and sensory observations. Differences imply that either the sensor data or world model
is incorrect. Difference images from the comparator go three places:

a) They are returned directly to the WM for real-time local pixel attribute updates. This

produces a tight feedback loop whereby the world model predicted image becomes an array of

recursive state-estimations. Difference images are error signals used to make each pixel

attribute in the predicted image a “best estimate” of the corresponding pixel attribute in the

current sensory input.

b) Difference images are also transmitted upward to spatial and temporal integrators where
they are integrated over time and space in order to recognize and detect entity attributes. This

integration constitutes a summation, correlation, or “chunking”, of sensory data into entities.

At each level, lower order entities are “chunked” into higher order entities, i.e. points are

chunked into lines, lines into surfaces, surfaces into objects, objects into groups, etc.

c) Difference images also are transmitted to the VJ module at the same level where statistical

parameters are computed so as to assign uncertainty and believability factors to estimates of

pixel entity attributes.

3)

Temporal integration

Temporal integration accumulates similarities and differences between predictions and
observations over intervals of time. Temporal integration operating just on sensory data can

produce a summary, such as a total, or average, of sensory information over the given time

window. Temporal integrators operating on the similarity and difference values computed by
comparators may produce temporal cross-correlation and covariance functions between the model
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and the observed data. These correlation and covariance functions are measures of how well the

dynamic properties of the world model entity match those of the real world entity. The boundaries

of the temporal integration window may be derived from world model prediction of event

durations, or from behavior generation parameters such as sensor fixation periods.

Figure 11. Each sensory processing SP module consists of: 1) a set of coordinate

transformers, 2) a set of comparators that compare sensory observations with world model
predictions, 3) a set of temporal integrators that integrate similarities and differences, 4) a

set of spatial integrators that fuse information from different sensory data streams, and 5) a

set of threshold detectors that recognize entities and detect events

4) Spatial integration

Spatial integration accumulates similarities and differences between predictions and
observations over regions of space. This produces spatial cross-correlation or convolution

functions between the model and the observed data. Spatial integration summarizes sensory

information from multiple sources at a single point in time. It determines whether the geometric

properties of a world model entity match those of a real world entity. For example, the product of

an edge operator and an input image may be integrated over the area of the operator to obtain the

correlation between the image and the edge operator over the region covered by the filter. The
limits of the spatial integration window may be determined by world model predictions of entity

size and shape. In some cases, the order of temporal and spatial integration may be reversed, or

interleaved.

5) Recognition/Detection threshold
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When the spatio-temporal correlation function exceeds some threshold, object recognition (or event

detection) occurs. For example, if the spatio-temporal summation over the area of an edge operator

exceeds threshold, an edge is said to be recognized at the center of the area.

The Sensory Processing Hierarchy
It has long been known that sensory processing occurs in a hierarchy of processing

modules, and that perception proceeds by "chunking,” i.e. by recognizing patterns, groups,

strings, or clusters of points at one level as a single feature, or point in a higher level, more abstract

space. It also has been observed that this chunking process proceeds by about an order of

magnitude per level, both spatially and temporally [17,18]. Thus, at each level in the proposed

architecture, SP modules integrate, or chunk, information over space and time by about an order

of magnitude.

In order to facilitate the comparison of predicted and observed variables, there must be a

correspondence between the form of the sensory data being processed at each level of the sensory

processing hierarchy and the form of the information stored in the world model knowledge base

at that level. This is illustrated in Figure 10 where:

Level 1 of the sensory processing hierarchy compares point measurements with projected

point entities from the world model. Differences are used to correct the estimated point entities.

Similarities between observed and predicted point entities are integrated into line entities.

Level 2 of the sensory processing hierarchy compares observed line entities with projected

line entities from the world model. Differences are used to correct the estimated line entities, and
similarities are integrated into surface entities.

Level 3 compares observed surfaces with predicted surfaces. Differences are used to

correct the predictions, and similarities are integrated to recognize objects.

Level 4 compares observed objects with predicted objects. Differences are used to correct

the world model, and similarities are integrated into groups.

Level 5 compares observed and predicted group characteristics, updates the world model,

and integrates information into larger groups. And so on.

Further discussion of the sensory processing hierarchy appears in [1].

Section 7. Value Judgments

Value judgments provide the criteria for making intelligent choices. Value judgments
evaluate the costs, risks, and benefits of plans and actions, and the desirability, attractiveness, and
uncertainty of objects and events. Value judgment modules produce evaluations that can be
represented as value state-variables. These can be assigned to the attribute lists in entity frames of

objects, persons, events, situations, and regions of space. They can be assigned to map pixels and
can become map overlays. Value state-variables can thus label objects, situations, or places as

good or bad, friendly or hostile, attractive or repulsive.

Value judgment algorithms may evaluate risk and compute the level of uncertainty in the

recognition of entities and the detection of events. Knowledge in the world model can thus be
labeled as reliable or uncertain.

Value judgments can evaluate events as important or trivial. The utilization of memory
can be optimized by storing only those events and situations evaluated as “important”. Those
events labeled as “trivial” can safely be forgotten and cleared from memory, fritelhgent machines
that include capabilities for learning require value judgment functions to indicate what to “reward”
and what to “punish.”

Cost/benefit value judgment algorithms can be used to evaluate plans or steer task execution

so as to minimize cost and maximize benefits. Value state-variables can be assigned to the

attribute lists of plans and actions in task frames to label tasks and plans as good or bad, costly or

inexpensive, risky or safe, with high or low expected payoff Priorities are value state-variables
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that provide estimates of importance. Priorities can be assigned to task frames so that planners

and executors can decide what to do first, how much effort to spend, how much risk is prudent,

and how much cost is acceptable, for each task. Value state-variables can thus be used by the

behavior generation modules both for planning and executing actions. They provide criteria for

making decisions about which coarse of action to take. Priorities may also determine the degree of
alertness, or tactics chosen for planning tasks in a hostile environment. A priority on safety may
produce conservative tactics. A priority on aggression may produce an attack on an enemy. Such
priorities are typically input from a human commander.

Intelligent systems designed for military purposes typically require value judgments
labeling objects in the world model as “friend” or “foe.” If an object is labeled “friend” it should

be defended or assisted. If it is labeled “foe” it should be attacked or avoided. The computation of

“friend or foe” may be accomplished by signal analysis or pattern recognition. This computation

may be very difficult, or trivially simple. For example, in current battlefield situations, friendly

systems typically carry transponders that actively emit signals, or modulate reflected energy in a

distinctive way that makes recognition of “friend” easy, even in smoke or fog or at night. Often,

anything else is assumed to be “foe”.

VJ Modules
Value state-variables may be assigned by a human programmer or operator, or they may be

computed by value judgment functions residing in VJ modules. Inputs to VJ modules describe

entities, events, situations, and states. Inputs may also include sensor signal-to-noise ratio,

variance between sensory observations and world model predictions, degree of success in goal

achievement, and reward or punishment signals from a variety of sources. VJ value judgment
functions may compute measures of cost, risk, and benefit. VJ outputs are value state-variables

that may be assigned to objects, events, or plans.

The VJ value judgment mechanism can typically be defined as a mathematical or logical

function of the form
E = V(S)

where E is an output vector of value state-variables

V is a value judgment function that computes E given S
S is an input state vector defining conditions in the world model,

including the self.

The components of S are entity attributes describing states of tasks, objects, events, or

regions of space. These may be derived either from processed sensory information, or from the

world model. The value judgment function V in the VJ module computes a numerical scaler value

(i.e. an evaluation) for each component of E as a function of the input state vector S . The
components of E may be assigned to attributes in the world model frame of various entities,

events, or states. E is a time dependent vector.

Further discussion of value judgments can be found in [1].

Conclusion
RCS is a reference model architecture that defines the types of functions that are required in a

real-time intelligent control system, and how these functions are related to each other. RCS is not

a system design, nor is it a specification of how to implement specific systems. It has,

nevertheless, been found useful by many researchers and engineers for designing intelligent

machine systems.

Systems based on the RCS architecture have been designed and more or less implemented
for a wide variety of applications that include loading and unloading of parts and tools in machine
tools, controlling machining workstations, performing robotic deburring and chamfering, and
controlling space station telerobots, multiple autonomous undersea vehicles, unmanned land

vehicles, coal mining automation systems, postal service mail handling systems, and submarine
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operational automation systems. Software developers accustomed to using RCS for building

control systems have found it provides a stmctured, even recursive, approach to design that makes
it possible to reuse a great deal of software, not only within a single system, but between systems

designed for significantly different applications.

Critics of RCS have objected to its rigidity, claiming “it forces a system to be built in a

certain structure, even if it can be built more effectively in a different architecture”. This,

however, misses the point of a reference model architecture. A reference model architecture is a

canonical form, not a system design specification. Reference models can be implemented in a

variety of ways. For example, RCS could be implemented with neural nets (at least in principle).

Many of the lower level features can be implemented by finite-state-machines and motion

controllers. Higher level functions can be implemented by expert systems, hsp machines,

transputers, connection machines, or special purpose processing engines. The RCS reference

model architecture combines real-time motion planning and control with high level task planning,

problem solving, world modehng, recursive state estimation, tactile and visual image processing,

and acoustic signature analysis. In fact, the evolution of the RCS concept has been driven by an

effort to include the best properties and capabilities of most, if not aU, the intelligent control

systems currently known in the literature, from subsumption to SOAR [19], from blackboards [20]

to object-oriented programming [21].

However, the apparent completeness of the canonical form of RCS should not be taken to

mean that aU of the problems are solved in each of these areas, and all the issues are resolved. Far

from it. The enormous complexity of the RCS architecture should lead one to appreciate how
difficult the task of creating intelligent systems is going to be. Not so long ago, respected people

were predicting that intelligent robots would be able to duplicate human performance before the end
of this century. An correct understanding of the RCS reference model should lead one to realize

that the creation of intelligence may be more complex and scientifically challenging than

controlhng fusion or analyzing the genome, and possibly more rewarding as well.

Current research efforts at NIST are directed towards understanding how to use the RCS
reference model as a design tool. An RCS design paradigm begins with analysis of tasks and
goals, then develops control algorithms, data structures, and sensory information necessary to

perform the tasks and accomplish the goals. Attempts are underway to develop this approach into

a formal methodology for engineering real-time intelligent control systems and analyzing their

performance.
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Strawman NML
for NGC Machine Tool Modules

For each level in the NGC control hierarchy, a set of typical task frames have been defined.

Following that, a set of machine tool NML message frames are also defined.

Starting with the lowest level in the NGC hierarchy:

Level 1 - Control Law

Level 1 (Control Law) machine tool task frames

Task Names SERVO, HI_SERVO, DISCRETE

Object

Goal

Parameters

Agents Axis actuators, or discrete actuators

Requirements Axis limits ok, discrete combinations ok

Procedures Control algorithm (e.g. PD, PID, etc.), discrete delays, etc.

Trajectory point interpolation algorithm (e.g. straight line,

polynomial, etc.)

Level 1 NML message frames

Control Law COMMAND Input from Level 2 Profile Generator

Command Name SERVO

Object Cutting tool id

Goal Desired pose

(i.e. position and orientation), velocity, acceleration.

Jerk, force, or force-rate of tool tip in part coordiinates

Parameters Command ID (index that uniquely defines a specific

command)

Control Law COMMAND Input from Level 1 Operator

Command Name HI SERVO

Object (Same as from Level 2 profile generator)

- 1
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Goal

Parameters

(Same as from Level 2 profile generator)

(Same as from Level 2 profile generator)

Operating mode (e.g. Manual, shared, automatic)

REPLY (STATUS) Output to Level 2 Profile Generator

Command ID ID of currently executing command

Status Status of current command execution

Operating mode Manual, shared, or automatic

REPLY (STATUS) Output to Level 1 Operator

Same as REPLY output to level 2 profile generator

QUERY Output to Level 1 World Model

Request for RETRIEVAL input from level 1 world model. (This request may be implicit)

RETRIEVAL Input from Level 1 World Model

State clock and sync signals

Observed state vector defining the observed pose (i.e. position and orientation), velocity,

acceleration, jerk, force, or force-rate of each actuator.

Jacobian matrix for inverse kinematic coordinate transform (tool => actuator)

COMMAND Output to Sensor / Actuator Bus

Desired actuator force, torque, velocity, or power
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Level 2 - Profile Generator

Level 2 (Profile Generator) typical task frames

Task Names DYNAMIC.PATH, or OPERATOR.DYNAMIC-PATH

Object

Goal

Parameters

Agents Servo controllers

Requirements Load dynamics within capacity of actuators

Procedures Acceleration and deceleration algorithms for computing

dynamic trajectories

Level 2 NML frames

Profile Generator COMMAND Input from level 3 Machine Executive

Command Name DYNAMIC PATH

Object Cutting tool

Goal Desired pose (i.e. position and orientation), velocity,

acceleration, jerk, force, or force-rate of tool

Parameters Command ID
Goal pose tolerance

Dynamic path deviation tolerance

Trajectory dynamics objective function

Command coordinate system (= part feature)

Position/Force selection vector

Redundancy resolution specification

COMMAND Input from level 2 operator

Command Name OPERATOR_DYNAMIC_PATH

Object (Same as from Level 3 machine executive)

Goal (Same as from Level 3 machine executive)

Parameters (Same as from Level 3 machine executive)

Operating mode (e.g. Manual, shared, automatic)

- 3 -



REPLY Output to Level 3 Machine Executive

Command ID

Status

Operating mode

ID of cunently executing command

Status of current command execution

Estimated execution termination time

Manual, shared, or automatic

REPLY Output to Level 2 Operator

Same as reply output to level 3 machine executive

QUERY Output to Level 2 World Model

Requests for information RETRIEVAL from level 2 World Model

RETRIEVAL Input from Level 2 World Model

State clock and sync signals

Observed pose, velocity, force of load or tool

Trajectory segment defining observed poses, velocities, and forces of load or tool

Jacobian matrix for inverse kinematic and force coordinate transform (part feature => tool)

Manipulator dynamic model
Load dynamic model
Object contact point parameters (position, velocity, stiffness, friction, strength, etc.)

Limits of travel in coordinate system of command
Singularity clearance margins

Position, velocity, and force limits

Estimated time or distance to contact

COMMAND Output to Level 1 Control Law

Same as level 1 COMMAND input from level 2 profile generator
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Level 3 - Machine Executive

Task Names

Machine Executive level task frames

MOVE-TO, MACHINE-FEATURE, etc.

Object

Goal

Parameters

Agents Dynamically coupled motion controllers

Requirements Enabling conditions (conditions that must be satisfied to begin

or continue the commanded task)

Disabling conditions (conditions that will cause the commanded
task to be interrupted or discontinued

Procedures Cutter location path planning algorithms for machining features,

including checl^ to detect and avoid collisions with fixtures or

other obstacles

Machine Executive level NML frames

COMMAND Input from Level 4 Task Coordinator

Command Name MOVE-TO, MILL-FEATURE, DRILL-FEATURE, GRIND-

Object

FEATURE, etc.

ID of part surface or feature being machined

Goal Desired path of tool relative to part in part coordinates

Parameters Command ID

Goal condition tolerance

Tool to be used

Axis coordination requirements

Speed, or completion time requirements

COMMAND Input from level 3 operator

(Same as COMMAND Input from Level 4 task coordinator), plus Operating mode (e.g.
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Manual, shared, automatic)

REPLY output to level 4 task coordinator

Operating mode

Planning queue status

Execution command ID

Execution status

Estimated execution termination time

REPLY output to level 3 operator

Same as reply output to level 4 task coordinator

QUERY output to level 3 world model

Request for information RETRIEVAL input from level 3 world model

RETRIEVAL input from level 3 world model

State clock and sync signals

Jacobian matrix for inverse coordinate transform (object => object surface or feature)

Machine tool geometry and dynamic model

Object machinability parameters

Limits of travel in coordinate system of command

Position, velocity, and force limits

Estimated obstacle clearance for planned paths

Cost/benefit analysis on hypothesized path plans

COMMAND output to level 2 profile generator

Same as level 2 command input from level 3 machine executive
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Level 4 - Task Coordinator

Task Names

Level 4 (Task Coordinator) task frames

MACHINE-PART, GRIND-PART, DEBURR-PART, etc.

Object

Goal

Parameters

Agents Machine subsystems such as motion control, tool changers.

coolant spray, etc.

Requirements Tools or fixtures to be used

Task enabling and disabling conditions

Procedures

Task synchronization and scheduling requirements

Process plans or planning algorithms for generating sequences

machine executive commands

Level 4 Task Coordinator NML frames

COMMAND Input from Level 5 Workstation Executive

Command Name MACHINE-PART, GRIND-PART, DEBURR-PART, etc

Object ID of part or material stock to be acted upon (as-is condition)

Goal Either 1) Desired task or operation to be performed on an object.

Or 2) Goal state to be achieved by operation (to-be condition)

(Note: Many Task Coordinator commands at level 4 may have names similar or identical to

Machine Executive commands at level 3. The difference is that, at level 4, the object acted upon is a

part with many surfaces or features, whereas at level 3, the object is a single surface or feature of

the part.)

Parameters Command ID

Goal state tolerances

Coordinate system (=workspace machine tool)

Task or part priority

Coordination requirements with other machines
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Duration, speed, or completion time requirements

(Note: At level 4 and above, an input list containing more than one task command at a time may be
permitted. This list should be prioritized, and must specify sequential ordering requirements if they

exist.)

REPLY output to level 5 Workstation Executive

Operating mode

Planning command ID

Planning queue status

Execution command ID

Execution status

Estimated execution temiination time

COMMAND input from level 4 operator

(Same command input as from level 5 Workstation Executive), plus

Operating mode Manual, shared, or automatic

REPLY output to level 4 operator

(Same as report output to level 5 Workstation Executive)

QUERY output to level 4 world model:

(Request for RETRIEVAL input from level 4 world model)

RETRIEVAL input from level 4 world model

State clock

Sync signals from other equipment

Observed degree of task completion

Workspace geometry and dynamic model

Workspace attributes (lighting, temperature, visibility, etc.)

Resources available to machine tool (parts, tools, fixtures, etc.)

Measured pait geometi7
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Measured part state variables (position, orientation, velocity)

Part and tool attributes (color, mass, hardness, surface characteristics)

State of enabling and disabling conditions

Predicted results of hypothesized plans

Cost/benefit evaluation of hypothesized plan results

COMMAND output to level 3 Machine Executive

(Same as level 3 command input from level 4 Task Coordinator)

Task Names

Level 5 - Workstation

Level 5 Workstation task frames

MACHINE-GROUP (of parts in a tray, for example), etc.

Object

Goal

Parameters

Agents Machine tools, robots, part buffers, inspection devices, etc.

Requirements List of tools, materials, and fixtures to be used

Task enabling and disabling conditions

Task synchronization requirements with other equipment

Procedures Process plans or planning algorithms for generating

coordinated sequences of level 4 task coordinator commands

Level 5 Workstation NML frames

COMMAND Input from Level 6 Cell Control

Command Name MACHINE-GROUP, etc.

Object ID of group of objects to be acted upon (as-is)
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Goal Either

Or

Parameters

REPLY output to level 6

Operating mode

Planning command ID

Planning queue status

Execution command ID

Execution status

Estimated execution termination time

COMMAND input from level 5 operator

(Same inputs as command inputs from level 6 Cell control), plus

Operating mode (shared, manual, or automatic)

REPLY output to level 5 operator

(Same as reply output to level 6 Cell control)

QUERY output to level 5 world model

Request for RETRIEVAL feedback from level 5 world model

RETRIEVAL input from level 5 world model

State clock

Sync signals from other equipment

Observed degree of task completion

Workspace geometry and task timing model

1) List of workstation tasks to be performed on a group of

objects

2) List of goal states to be achieved (to-be)

Command ID

Goal condition tolerances

Coordinate system (= workstation)

Group priority

Completion time requirements

Cell control
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Equipment availability in workstation

Workstation equipment capabilities

Tray state variables (tray pose, tray slot occupancy)

Tray attributes (size, shape, bar code)

State of enabling and disabling conditions

Predicted results of hypothesized plans

Cost/benefit evaluation of hypothesized plan results

COMMAND output to level 4 Task Coordinator

(Same as level 4 command input to from level 5 Workstation Executive)

- 11 -
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Appendix C: Strawman NGC Commands for 3-axis

Machining
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NGC Machining Commands

NGC COMMANDS FOR 3-AXIS MACHINING
T. Kramer

November 4, 1991

This is a list of proposed NGC commands for a 3-axis machining center. Most of these commands
should be suitable for machining centers with more than three axes. Commands at level 4 (task)

level 3 (E-move), and level 2 (primitive) of the NASREM hierarchy are given.

For each command, the name of the command and a description of the effects of the command are

given. Parameter names are given in italics for all commands. Allowable values for parameters

are not specified here but need to be provided. In most cases the nature of the parameter value is

evident fi’om the parameter name. It would be very desirable to use a formal information

modeling language such as EXPRESS to specify these commands in more detail. Among other

desirable features, EXPRESS provides a rich method of describing allowable parameter values.

The capability to handle expressions will be desirable in NGC controllers. To handle expressions,

there must be a set of built-in operations (sum, square root, logical and, sine, etc.). Expressions

are used by permitting a command to contain an expression in lieu of any parameter value, so long

as each expression yields the proper type of value when it is evaluated. Immediately prior to

executing a command, the controller evaluates any expressions in the command. Some existing

controllers (GE-2000, for example) have the capability to handle expressions. It is assumed here

that expressions will be allowed in NGC controllers, but no definitions of expressions have been

adopted. A specification of expressions will be required. It seems desirable to have the expression

rules be part of a command language which may be applied to all levels of the NGC controller,

rather than to adopt a different set of rules for expressions at each level.

Level 4 Task

REMOVE_VOLUMES plan id, designJd, material_removal_volumes_id, setup_id,

workpiece_id, fixture_id

The REMOVE_VOLUMES command causes a set of material removal volumes to be removed

from a workpiece. The command parameters include a process plan identifier (planjd), a design

identifier (designjd), an identifier for the set of material removal volumes referenced in the

program {material_removal_volumes_id), an identifier for setup instructions (setupjd), an

identifier for the workpiece that will be machined {workpieceJd), and an identifier for the fixture

to be used (fixtureJd). This command is used to do the work done in a single fixturing of a

workpiece. The workpiece may start as a piece of stock or as a partially machined workpiece. The

workpiece may end as a completely machined part or as a partially machined workpiece.
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Level 3 E-move

For those level 3 commands which require a material removal volume, it is expected that the

volume will be of a type described in a library of generic removal volumes as being suitable for

use with the operation. When an operation is finished, no material may remain in the material

removal volume, and the operation may remove no material outside the material removal volume.

Material removal volumes are not necessarily completely filled with material before the operation

starts. A proposed library of material removal volumes has been defined at NIST. Material

removal volume definitions referenced in level 3 commands would be in the world model.

The level 3 (E-move) commands may be arranged in a hierarchy as shown on the last page of this

paper. The descriptions of the individual commands do not refer to the hierarchy.

BORE tool_type_id, material removal volume, spindle speed,feed rate

The BORE command results in a hole being bored. The cutter must be a boring tool.

CENTER_DRILL tooljype id, material removal_yolume, spindle speed,feed rate

The CENTER_DRILL command results in a small starter hole being made with a center_drill

cutter by a single-stroke plunge into the material.

COUNTERBORE tool type id, material removal volume, spindle speed,feed rate

The COUNTERBORE command results in an existing hole being enlarged.

END_PROGRAM (no parameters)

The END_PROGRAM command indicates the end of a program has been reached. It may cause

activities such as spindle retract, return to home position, cleanup of the world model, resetting

machine parameters, etc.

FACE_MILL tooljypejd, material_removal_volume, spindle_speed, feed_rate, passjdepth.

2
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stepover

The FACE_MILL command results in the material removal volume being machined away by a

face_mill cutter.

FINISH_MILL tool type id, material removal_yolwne, spindle_speed, feed rate, stepover

The FINISH_MILL command results in the removal with a finish end_mill (with cutter nose

geometry suitable for the material removal volume) of any material in the material removal

volume, so that the resulting surfaces meet some desired quality specification. Only a small

thickness of material should be removed in this operation. The stepover parameter is required for

milling with the flat portion of the nose of the cutter, where an area larger than the area of the nose

of the tool is being finished.

FLY_CUT tooljypejd, material removal volume, spindle speed, feed rate, pass depth,

stepover

The FLY_CUT command results in the material removal volume being machined away by a

fly_cutter.

INmALIZE_PROGRAM program name, designjd, material_removal_volumes_id, setupjd,

workpiece id, material, fixture id, programjc zero, program_y_zero, program_z_zero

The INITIALIZE_PROGRAM command initializes the controller to be ready to accept additional

level 3 commands, all of which, up to an END_PROGRAM command, are logically parts of a

single program for machining a single workpiece using a single fixture. The command identifies

the name of the program (programjiame), a design identifier (designjd), an identifier for the set

of material removal volumes referenced in the program (material_removal volumesJd), an

identifier for setup instructions (setupjd), an identifier for the workpiece that will be machined

(workpieceJd), the name of the type of material being machined (material), an identifier for the

fixture to be used (fixtureJd), and the location of the program zero in machine coordinates

(programjc_zero,program_y_zero, and program_z_zero). This command causes no motion in the

machining center. This command is not used to bring the machining center task controller to a

ready state from a cold start; that must be done before an INITIALIZE_PRC)GRAM command is

given.
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MACHINE_CHAMFER tool_type_id, material_removal_volume, spindle_speed,feed_rate

The MACHINE_CHAMFER command results in an edge being chamfered. The cutter must be a

chamfer tool (tool profile is a cone, possibly tmncated).

MACHINE_COUNTERSINK tooljypejd, material_removal_yolume, spindle_speed, feed_rate

The MACHINE_COUNTERSINK command results in a hole being countersunk with a

countersink cutter.

MACHINE_ROUND tooljypejd, materialjemovaljolume, spindle_speed,feedjate

The MACHINE_ROlJND command results in an edge being rounded. The cutter must be a

rounder (side of tool profile is an arc of a circle).

PERIPHERAL_MILL tooljypejd, materialjemovaljolume, spindle_speed, feedjate,

passjiepth, stepover

The PERIPHERAL_MILL command is for milling an exterior or interior contour by milling at

the periphery only. Unlike rough_mill, it may not contain any plunging or slotting. The cutter

must be an end_mill (with nose geometry suitable for the material removal volume).

REAM tooljypejd, materialjemovaljolume, spindlejpeed,feed rate

The REAM command causes a small amount of material to be removed from the inside of an

existing hole. The cutter must be a ream. The material cut away must be a very small thickness

around the surface of the material removal volume.

ROUGH_MILL tooljypejd, materialjemovaljolume, spindlejpeed, feedjate, passjiepth,

stepover

The ROUGH_MILL command results in the milling with an end_mill of the designated material

removal volume. It is expected that requirements on the surfaces created by this operation will be

such that no consideration needs to be given to surface quality in determining machining methods.

The operation may include plunging, slotting, and both conventional cutting and climb cutting.

The cutter which is used may be a rough end_mill or a finish end_mill (with nose geometry

suitable for the material removal volume).
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SETO_CENTER tool type id, near x, near_y, xjoffset, y_ojfset, near diameter

The SETO_CENTER command results in a probe cycle being run in which a hole with its axis

parallel to the z-axis is probed. Program x_zero and y_zero are set at the center of the hole or by

offsetting from the center. The tool must be a probe.

SETO_CORNER tooljypejd, near x, near_y, x_ojfset, y_offset, corner type

The SETO_CORNER command results in a probe cycle being run in which a comer is probed.

The comer must be formed by two planes parallel to the z-axis. Program x_zero and y_zero are

set at the comer or by offsetting from the comer. The tool must be a probe.

SET0_Z tooljypejd, xjocation, y location, zj)jfset

The SETO_Z command results in a probe cycle being mn in which a surface parallel to the xy-

plane is probed. Program z_zero is set at the surface or by offsetting from the surface. The tool

must be a probe.

SLOT_MILL tool typeJd, materialjemovaljolwne, spindlejpeed, feedjate, pass depth

The SLOT_MILL command results in a slot being milled. The shape of the material removal

volume will be such that it may be produced by having the tool follow a path (simple or complex)

in which the tool will generally be cutting across its full width to form a slot.

TAP tooljypejd, material removaljolume, spindle speed,feed rate

The TAP command results in the inside of an existing hole being threaded. The cutter must be a

tap.

TWIST_DRJLL tooljypejd, materialjemovaljolume, spindle speed,feed rate, passjlepth

The TWIST_DRILL command results in a hole being drilled. The passjlepth parameter is used if

the user’s TWIST_DRILL strategy is to perform peck drilling. It may be desirable to split this

command into three commands: plunge_drill, peck_drill, and small_hole_drill.
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Level 2 Primitive

This set of primitive commands is intended to provide for all the generic primitive functions of

popular existing machine tool controllers for single-spindle 3-axis machining centers (vertical or

horizontal). The primitive capabilities of a Monarch VMC-75 vertical machining center with a

GE-2000 controller and a Renishaw probe are covered here, with the exceptions noted below,

though the commands here have different names and often somewhat different effects. It wOl be

very desirable to check this set against additional existing machine tool plus controller

combinations.

Two desirable capabilities (2D and 3D parametric tool motion) that the GE-2000 does not have

but could be performed on the Monarch VMC-75 with a different controller are included here.

GE-2000 capabilities to execute macro commands (instructions G61, G79, and G81 through G89)

are not covered here because they are conceptually E-move level commands. GE-2000
capabilities for setting registers are not covered here because it is expected they will be covered

by provisions for handling expressions discussed at the beginning of this paper. GE-2000 “W-
axis” commands for moving the head of the machining center are not covered here because the

conceptual view taken here of a 3-axis machining center does not require a movable head. The

GE-2000 commands for switching between incremental and positional interpretation of location

data (g90 and g91) are not covered because this represents changing the command interpreter. The
following GE-2000 commands are not covered for a variety of reasons: (G21, G22, G23 -

conceptually redundant with straight line and arc motion), (G51), (G57), (G77, G78, G80, G94 -

not needed), (G92), (G93 - redundant with setting feed rate), (many M commands - special-

purpose machine-specific capabilities).

The commands required for a using a touch probe in the spindle of the machining center are

included in this set. The probe is being treated as part of the machining center. An alternative

method of dealing with the touch probe would be to treat it as a separate device with its own
controller. Other sensory devices are not dealt with here. If it is decided to treat sensory devices as

part of the machining center, sets of commands for such devices will have to be added to this set.

If sensory devices are to be handled with separate controllers, the touch probe commands here

might be deleted.

For several pairs (e.g., FLOOD_ON and FLOOD_OFF) or sets of commands (e.g.,

USE_NO_TOOL_LENGTH_OFFSETS, USE_MODIFIED_TOOL_LENGTH_OFFSETS,
USE_NORMAL_TOOL_LENGTH_OFFSETS), it would be feasible to replace the pair or set

with a single command having a parameter. For example there could be a SET_FLOOD command
whose parameter could take the values “on” and “off’, and there could be a

SET_TOOL_OFFSET_MODE command whose parameter could have the values “no_offset”,

“normal” or a register number (for the “modified” mode). In general, separate commands have

been kept here, since separate commands seem easier to use and less likely to be used incorrectly,

but consideration might be given to replacing them.
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Activities that Control Spindle Translation

It is assumed in these activities that the spindle tip is always at some location called the “current

location”, and the controller always knows where that is. It is also assumed that there is always a

“selected plane” which must be the xy-plane, the yz-plane, or the xz-plane of the machine.

ARC_FEED first axisjcoordinate, second_axis_coordinate, rotation, axis endjjoint

Move in a helical arc from the current location at the existing feed rate. The axis of the helix is

parallel to the x, y, or z axis, according to which one is perpendicular to the selected plane. The

helical arc may degenerate to a circular arc if there is no motion parallel to the axis of the helix. If

the selected plane is the xy-plane, first axisjcoordinate is the axis x-coordinate,

secondjjxis coordinate is the axis y coordinate, and axisjcndj)oint is the z-coordinate of the end

of the arc. If the selected plane is the yz-plane, first axis coordinate is the axis y-coordinate,

secondjoxis coordinate is the axis z-coordinate, and axis end_point is the x-coordinate of the

end of the arc. If the selected plane is the xz-]p\an&,first_axis_coordinate is the axis x-coordinate,

second axisjcoordinate is the axis z coordinate, and axis endjyoint is the y-coordinate of the end

of the arc. The rotation parameter represents the number of degrees or radians in the arc. Rotation

is positive if the arc is traversed counterclockwise as viewed from the positive end of the

coordinate axis perpendicular to the currently selected plane. The radius of the helix is determined

by the distance from the current location to the axis of helix.

There are several ways in which the parameters for ARC_FEED could have been selected. Also,

the command could have been split into two commands, one for clockwise and the other for

counterclockwise, as is currently done with G2 and G3 codes in the RS-274D standard. The

parameters selected above have the advantages that (1) there is no redundant information in the

parameter values, (2) any set of numerical parameter values makes sense, and (3) any arc of a

given helix (or several passes around a circle) can be produced by a single command (a capability

existing controllers generally do not provide).

One alternative used by existing controllers is to specify the radius of the helix and the end point

of the arc. In this parameterization it is assumed that the arc is not more than 360 degrees. This set

of parameters allows two possible arcs, a large one and a small one, so a method of discriminating

between the two is required, either by an additional parameter, or by overlaying an additional

discriminator on the existing parameters, such as having the radius be negative for a large arc and

positive for a small one (this is done in some existing systems). In this parameterization it is

possible to give parameter values which do not make sense, since only those points within a

cylinder whose axis passes through the current location and whose radius is twice the given radius

value can be reached by the arc.
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DWELL duration

Do not move for the amount of time specified by duration. The ability to dwell is useful in finish

cutting.

PARAMETRIC_2D_CURVE_FEED firstJunction, secondJunction, start_parameter_yalue,

end_parameter_yalue

Move along a parametric curve in the selected plane. We will call the parameter u. If the selected

plane is the xy-p\an&, firstJunction gives x in terms of u and secondjunction gives y in terms of

u. Analogous assignments are made if the selected plane is the xz-plane or the yz-plane.

Allowable functions should include at least cubic polynomials and elementary trigonometric

functions. The current position of the spindle must be at coordinates corresponding to the

start_parameter_value. The final position of the spindle is at coordinates corresponding to the

end_parameter_value.

PARAMETRIC_3D_CURVE_FEED xJunction, yJunction, zJunction, start_parameter_yalue,

end_parameter_value

Move along a parametric curve in three dimensions, where x, y, and z are each functions of the

parameter u. Allowable functions should include at least cubic polynomials and elementary

trigonometric functions. The current position of the spindle must be at the coordinates

corresponding to the start_parameter_yalue. The final position of the spindle is at the coordinates

corresponding to the end_parameter_yalue.

SPINDLE_RETRACT (no parameters)

Retract at traverse rate to fully retracted position.

STRAIGHT_FEED x, y, z, probe

Move in a straight line at existing feed rate (or using the existing z-force) from the current point to

the point given by the x, y and z parameters. If z-force is enabled, the values ofx and y must be the

same as those of the current point.

The probe parameter is optional. If the probe parameter is present, the feed motion will stop when

the probe is tripped or when the endpoint is reached, whichever happens first. The probe must be

in the spindle and turned on beforehand if the probe parameter is used. If the probe parameter is

present and the probe is tripped during the motion, the fact that the probe was tripped and the
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position of the spindle at the time the probe was tripped will be recorded in the appropriate

registers or variables.

If the probe is tripped, the end position of the spindle is not determined, except that it must lie on

the straight line being followed, must lie between the trip point and the programmed end point,

and must be within a certain distance of the trip point. This indeterminacy is necessary because

the spindle cannot be stopped instantly and the controller cannot look ahead and slow it down as it

nears the end, as it would normally do for other motions. It should be feasible to require the

stopping point to be a fixed distance from the trip point, if that seems more useful.

It may be useful to define a separate command for using the probe. It may be useful to allow

probing while following other paths.

STRAIGHT_TRAVERSE x, y, z

Move in a straight line at traverse rate from the current point to the point given by the x, y and z

parameters.
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Other Physical Activities

Mist coolant and flood coolant are covered here. Through-spindle coolant might be added.

CHANGE_TOOL slot number

It is assumed that each cutting tool in the machine is assigned to a slot (intended to correspond to

a slot number in a tool carousel). This command results in the tool currently in the spindle (if any)

being returned to its slot, and the tool from the slot designated by slotjiumber being inserted in

the spindle. If there is no tool in the slot designated by slotjiumber, there will be no tool in the

spindle after this command is executed. For the purposes of this command, the tool includes the

tool holder.

It may be desirable to add a command something like “change_tool_buffer” for machines which

have a tool change buffer. Because of the time saved by a tool change buffer, it seems likely that

more machining centers will have them in the future.

FLCX)D_OFF (no parameters)

Turn flood coolant off.

FLC)OD_ON (no parameters)

Turn flood coolant on.

LOCK_SPINDLE_Z (no parameters)

Lock the spindle against vertical motion. This has no logical effect required for control, so it

might be deleted. Whether there is a spindle lock is an implementation detail.

MIST_OFF (no parameters)

Turn mist coolant on.
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MIST_ON (no parameters)

Turn mist coolant on.

ORIENT_SPINDLE orientation direction

This commands causes the spindle to turn at the current spindle speed in the given direction

(clockwise or counterclockwise) to the given orientation and stop. This command can be given

only if the spindle is not turning beforehand.

START_SPINDLE_CLOCKWISE (no parameters)

Turn spindle clockwise at currently set speed rate.

START_SPINDLE_COUNTERCLOCKWISE (no parameters)

Turn spindle counterclockwise at currently set speed rate.

STOP_SPINDLE_TURNING orientation

Stop spindle from turning. The orientation parameter is optional and indicates the orientation of

the spindle when it stops. If the spindle is already stopped, this command may be given as long as

there is no value for orientation.

TURN_PROBE_OFF (no parameters)

Turn the probe off.

TURN_PROBE_ON (no parameters)

Turn the probe on.
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UNLOCK_SPINDLE_Z (no parameters)

Unlock the spindle to permit vertical motion. This has no logical effect required for control, so it

might be deleted. Whether there is a spindle lock is an implementation detail.

Data Activities

SET_CUTTER_RADIUS_COMPENSATION radius

Set the radius value to be used in cutter radius compensation.

SET_FEED_RATEfeedrate

Set the feed rate that will be used when the spindle is told to move at the currently set feed rate.

SET_SPINDLE_FORCE/orce

Set the force with which the spindle is pushed in the z-direction. The force is positive when it is in

the positive z-direction. The force is negative when it is in the negative z-direction. This setting is

used for motions parallel to the z-axis whenever the USE_SPINDLE_FORCE command is in

effect.

SET_SPINDLE_SPEED speed

Set the spindle speed that will be used when the spindle is turning. This is usually given in rpm

and refers to the rate of spindle rotation.

SET_TRAVERSE_RATE rate

Set the traverse rate that will be used when the spindle traverses. It is expected that no cutting will

occur while a traverse move is being made.
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Control Activities

CANCEL_SPEED_FEED_SYNCHRONY (no parameters)

Do not require spindle speed and feed rate to be exactly synchronous.

SELECT_PLANE selected_plane

Use the plane designated by selected_plane as the selected plane.

START_CUTTER_RADIUS_COMPENSATION side

Apply cutter radius compensation when executing spindle translation commands. The value

stored in the cutter radius register will be used. The side parameter indicates whether the cutter is

to be to the left or right of the path described by a command.

STOP_CUTrER_RADIUS_COMPENSATION (no parameters)

Do not apply cutter radius compensation when executing spindle translation commands.

SYNCHRONIZE_SPEED_AND_FEED (no parameters)

The spindle speed and feed rate on a machining center are not normally forced to bear an exact

relation to one another, because it is usually more useful to be able to control them independently

(so that they may be accelerated and decelerated independently, for example). However, in

tapping, exact synchrony is required. This command tells the controller to maintain exact

synchrony, insofar as possible.

USE_ABSOLUTE_ORIGIN (no parameters)

Use the absolute machine origin.
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USE_LENGTH_UNITS units

Use the specified units for length. The possible value of units should include inches, centimeters,

and possibly others (millimeters and meters are strong candidates). It might be useful to have a

similar command for angle units, to allow switching between degrees and radians.

USE_MODIFIED_TOOL_LENGTH_OFFSETS register

Use the tool length offsets given in the tool length offset registers as modified by the number in

the given register. This command covers modifying tool length offsets to compensate for different

fixtures or for moving the head of the machining center (if it has a movable head). It may be

desirable to allow other parameter values than a register number.

USE_NORMAL_TOOL_LENGTH_OFFSETS (no parameters)

Use the tool length offsets given in the tool length offset registers.

USE_NO_SPINDLE_FORCE (no parameters)

Do not use spindle force. Instead, use the feed rate to determine spindle motion.

USE_NO_TOOL_LENGTH_OFFSETS (no parameters)

Do not use tool length offsets.

USE_PROGRAM_ORIGIN (no parameters)

Use the origin specified in the program origin register.

USE_SPINDLE_FORCE (no parameters)

This is useful in tapping, where a tap may be pushed into a hole with moderate force and screw

itself in. Then a moderate force is exerted out of the hole and the tap screws itself out again.

Tapping this way makes it unnecessary to coordinate axial motion with tap rotation, which is

required by the other standard tapping method.
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E-move

endprogram

xy_probing

nearx
near_y

xjoffset

yjoffset

probing

tooljypejd

setO_z

xlocation

yjocation

z_offset

cutting

tooljypejd

matj‘emoj>ol

spindlespeed

feedj-ate

setOcenter

near diameter

setOcorner

cornertype

bulkcutting

passdepth

stepovercutting

stepover

rough_niill

peripheral_niill

flycut

face mill

no_stepover_cutting

twist_drill

slot mill

inifialize_program

programjiame

designjd

mat_remo_volume

setupJd
workpieceJd

material

fixtureJd
programjcjero

program_y_zero

program_z_zero

surface_cutting

bore

counterbore

finish_mill

stepover

center_drill

tap

ream
machine_countersink

machine_chamfer

machine round

Hierarchy of Machining Operations - E-move Level
machining operations are shown in boldface type

attributes are shown in italic type

Only leaf nodes of the hierarchy may be instantiated.

To find all the attributes of an operation, trace down the hierarchy from “E-move”

to the operation and include the attributes of every node along the path.
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Appendix D: ADACS System Task Analysis





ABACS SYSTEM TASK ANALYSIS

Introduction

This appendix presents a task frame analysis of the Advanced Deburring and Chamfering System

(ABACS). The ABACS is an experimental deburring and chamfering system under development at the

National Institute of Standards and Technology. The ABACS highlights technological progress in

advanced sensory-interactive, robot controlled tooling. The ABACS workstation is composed of a Cincin-

nati Milicron T3 robot, a Kinetics ABT chamfering tool, a programmable logic controller for an array of

tools, and a fixturing vise. At present, the ABACS requires an operator to deliver parts, fixture individual

parts in the vise, initiate the automated chamfering and remove the chamfered part

The emphasis of this document is on the system representation of the ABACS. While analyzing the

ABACS, the concept of taskframe is used to organize the representation of ABACS system - which

includes data, functionaUty and application to a set of predefined tasks. The analysis uses the NASREM
hierarchical levels of control to stratify the tasks across a temporal and spatial domain. Within the NAS-
REM hierarchy, an ABACS level-by-level task vocabulary is presented that encapsulates the actions of the

goal-driven system. Given the set of ABACS task verbs, each verb as applied to a class of objects is then

studied. For the ABACS project the objects consisted of hard metal parts - either titanium or inconel.

Given instances of the verb-object pairings, task frames are filled with knowledge derived from the analy-

sis of the data and procedural knowledge that is necessary to achieve the verb goals. Specific categories of

task behavior and information modelhng are enumerated within the task frame methodology. The rest of

this document details the results of the task analysis of the ABACS system in the task frame format

Comments :

The ABACS task frames presented herein reasonably cover most of the ABACS functionality. At this

point, the notation and terminology are at times inconsistent. A more formal task frame description lan-

guage - such as EXPRESS - is under review.

Appendix Contents :

1) ABACS Command Vocabulary for each Level of the NASREM Hierarchy

2) Generic Task Frame Template

3) ABACS Set of Task Frames

4) Abridged Lexicon of ABACS terminology



ADACS COMMAND VOCABULARY for each Level of the NASREM Hierarchy

Level 5 Workstation - INPUT

INIT plans the sequence of tasks required to put the ADACS workcell into ready status.

CHAMFER-BATCH plans the sequence of acquisition/delivery tasks and chamfering tasks required to chamfer a batch of

parts.

SHUTDOWN plans the sequence of tasks required to put the ADACS into safe and idle status.

Level 4 Task

INIT plans the sequence of tasks required to put the agents of the Task Level and lower levels into ready status.

CHAMFER-PART takes a PDES description of a part, knowledge of the finishing requirements, and the location of the part,

and plans a sequence of part fixturing and edge chamfering operations for a single part.

SHUTDOWN-TASK plans the sequence of tasks required to put the agents of the Task Level and lower levels into safe and idle

status.

FIXTURE-PART* plans the sequence of operations required to fixture the part in the vise. This command requires knowledge

of the beginning location of the part in the workcell and the final location of the part in the vise.

UNFIXTURE-PART * plans the sequence of operations required to remove the part from the vise. This command requires that

the final location of the part be specified.

Level 3 Elemental Move

INIT plans the sequence of operations required to put the E-Move Level and lower levels into ready status.

EMOVE->T3.MOVE plans the collision-free path from the current pose of the T3 robot to the given goal pose.

CHAMFER-FEATURE plans the sequence of robot and tool commands required to approach the feature, activate the tool,

track the feature, and depart from the feature. The geometry of the feature is defined in PDES format, the finishing requirements

for the feature are also defined, and the position of the part in the vise is known.

SHUTDOWN* plans the sequence of operations required to put the E-Move Level and lower levels into safe and idle status.

Level 2 Primitive - T3

T3.INIT plans the sequence of steps required to power up the T3 robot and establish the communication fink between it and its

host computer.

T3.MOVE takes a fist of intermediate poses, and plans a trajectory through those poses. Each intermediate move can be either

straight, circular, or a B-spline. Motion between each intermediate pose is smoothed such that the velocity of the tool center

point is non-zero between any successive poses, and zero at the end. Parameters for each successive move differ depending

upon the nature of the move. Straight moves require that the speed and acceleration be specified or are set to some default. Cir-

cular moves require a parameter to specify the circle (such as center point or a third point on the circle). Spline moves require

spline information, such as the knot points, time for motion, etc.

T3.MOVE-UNTIL takes a single pose, and will move in either a straight, circular, or B-spUne path until a prescribed force is

attained, at which time it will ramp down the motion.

T3.SHUTDOWNplans the sequence of steps required to power down the T3 robot and conclude the communication link

between it and its host computer.



Level 2 Primitive - ADT

INIT turns the power on to the pump, spindle, and ADT, and initializes the ADT.

SHUTDOWN-ADT-PRIM halts the tool motors and servos, and powers down the pump and spindle.

CONTROL: C{P1C} (NIT) {FIP} changes the gain/setpoint for the normal/tangential force/position for the ADT hybrid control

laws.

COMMAND - Performs a persistent update of the default parameters. Parameters include: 1) CT sets the orientation of the nor-

mal axis relative to the body of the ADT. 2) MH/RB/ES/IS/EM/IM home the ADT motors, reset the bias, and enable or inhibit

the servos and motors. 3) ED/IO enable or inhibit the continuous force and position data stream from the ADT. 4) POST-

FORCES causes a continuous dump of the ADT force and position information to be captured, filtered, and posted to the WM.

RESET abort the current command or reset the controller with ^/^P ADT command.

Level 1 Servo -T3

MOVE servos to commanded position. Uses T3 interface commands:

SWC causes the T3 to send out its current position.

This is really a request forWM information stored in the proprietary WM of the T3.

This command is sent once after the link has been initialized

RWC causes the T3 to move the commanded coordinates. This command is issued synchronously every 30 ms.

START restarts the T3 controller DDCMP communication link. Message numbers are reset to zero.

Level 1 Servo -ADT/PLC

SET - allows persistent setting of the default servo profile parameters (can be changed by the move command)

ADT-ON/ADT-OFF turns on or off the AC power to the ADT.

PUMP-ON/PUMP-OFF turns on or off the AC power to the water pump.

SPINDLE-ON/SPINDLE-OFF turns on or off the spindle power converter.

MOVE - Sets Spindle speed to send an analog voltage signal to the spindle power converter so that the spindle will rotate.





NAME GENERIC TEMPLATE
-5

rNFORMATION BASE

This section enumerates on the sensorfeedback requirements

section.

The World Model Knowledge should {contain I point to,)

schemas, and data models

The world knowledge include sections describing state v

ables, system variables, entity frames, event frames, and

maps.

General State and System Variables include:

state clock and sync signals

human interface variables

Level 1) best estimate of time and motion parameters

- ) status of switches or discrete actuators

Level 2) best estimate of time and motion parameters

van-

PROCEDURAL KNOWLEDGE

BG

The procedural knowledge specifies the routines necessary in control in job assignemnt, planning and state execution. To

achieve these goals, the modules typically perorm the following functions (which may assume to exist):

JOB_ASSIGNER.job_setupO {

collate_resources(in: work_force, job_parts, out: work_tools, work_agents)

allocate_resources(in: work_agents,work_tools, job_description; out; job_list); -resources available

PLANNER.plan_generation() {

schedule(in: job_list, priorities; out;job_schedule); — optimization of agents, tools, object)

evaluate_altematives(in; wm.procedures, command.parts, job_schedule(i); out: plan);

interpolate_plan_to_finer_slave_time_coordinates(in: plan; out: plan);)

PLANNER.contingency or emergency planning [

)

EXECUTOR.state_interpretationQ)[ — for each slave

wm/sp client interface(in; current_state);

state_evaluator(in;plan, current_state; out:next_state);

logical_to_device-dependent transformations(in:next_state;out:device_specific_state);

send_msg(in: SLAVE(i), device_spcefic_state);

}

This section contains the sensor processing and world model data manipulation and procedural knowledge needs. EXAM-
PLES:

Client/Service

example_geometric_transformation(in: local_coordinate; out: world_coordinate);

Daemon

SPAVV

wm.monitorjools{\n\ tool_status_list; out: operator_report);

wm.monitor_agents{in: agent_status_list; out; operator_report);

sp.analyze_performance{m: job_list_history; out: statistical_analysis);



NAME CHAMFER-BATCH LEVEL 5-Workstation -6

OBJECT CHAMERFING.PART_LIST:<as-is, to-be>

Chamfer each as-is part from the part list into its to-be part within some tolerance.

GOAL

DESCRIPTION

CHAMFER-BATCH takes an input command that specifies a list of part geometry descriptions with an as-is (serial number) and

a to-be (model number) and will chamfer the feature edges of each of the parts.

PARAMETERS STATUS AGENTS
command name Reoorting Statu?: CHAMFERING ROBOT:= 'H

part list: Percent job Completion - robot w/ chamfering tool

- as-is: serial-numbers Percent current part Completion

- to-be: model-numbers Tool Status(l..i): DELIVERY CART:=NULL
completion time-frame -Availability

priority

- speed Agent Status(l..i)

- precision - Availability

- cost - State : Active, On, Off, Error

REQUIREMENTS
TOOLS: CHAMFERING TOOL:=ADT FEEDBACK:

VISE
- Jawed Part Gripping

OPERATOR
- Fixtures parts, sends acks

percentage part completion

agent status: running, done, error

ENABLING CONDITIONS DISABLING CONDITIONS
Assumptions: Appropriate chamfering tool for each part, robot can

manipulate chamfering tool with given payload, and dimensional-

ity; vise can handle part(LxWxH) restriction. The material compo-

sition is of hard metal: either titanium or inconel. Operator

available to deliver and fixture parts when necessary.

Exceptions: lime-out, subsystem breakdown; power-failure;

PROCEDURE
chamfer_batch(PDES_FILE the_balch)

{ for each part in part_list{

S 1
:

plan_generaUion(); // generate or select a plan

S2: “instruct operator to fixture this part”; // wait for OK;

S3: chamfer_part(the_part);

S4: “instruct operator to remove the part”; ) )



NAME CHAMFER-BATCH
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INFORMATION BASE

TASK CONHGURATION:
State Clock and Sync Signals

Degree Task Completion:

Cost of Task

Task Timing Model

Modes: (off, single step input, single step output, automatic);

GROUP ENTITY FRAMES:
As-is batch

To-be batch

Workstation Entity Frames

- Workstation Coordinate Frame
- Workstation Map (agents,tools, obstacles, etc.)

Agent Capabilities: T3, human delivered parts

- availability: dedicated, hence always available

- payload

- envelope: manipulation limits (HxLxW)
- coordinate frame

7oo/5: ADT,PLC,TRAY
Tool Availability

Tool Service Record

coordinate frame

PROCEDURAL KNOWLEDGE

BG

JOB ASSIGNMENT
coordinate_resources(m: work_force, job_parts, out: work_tools, work_agents)

assign_resources(in:}obj;>ans; work_tools, work_agents, criteria; out: job_list{pan,tools,agents))

” assign tools/agents to job

PLANNER
assign_schedule(m: job_list(part, agents, tools) time_frame, out: job_schedule{part,tool,agent,time))

” assume part chamfering: 1st come, 1st serve

— assume tool assignment: 1st available (however since 1 tool is dedicated either busy/available)

EXECUTOR
co/27zgure_5ub5y5rcm(in:work_schedule, out: subsystem_configuration);

monitor_work(m: work_schedule, wm.job_status; out: send_next_cmdO);

Client/Service

workstation_coordinatejransformations. { to_agent, to_tool, to_part}

Daemon

SPAV^

wm.monitor_tools(in: tool_status_list; out: report);

wm.monitor_agents(\x\: agent_status_list; out: report);

sp.analyze_performance{m: job_list_history; out: statistical_analysis);



NAME CHAMFER-PART LEVEL 4- TASK 8

OBJECT P^TJD

achieve a process plan for given part that contains a list of feature-derived path points. The process plan

GOAL should incorporate heuristics to transition the paths along part discontinuities.

DESCRIPTION
.

'

..

'

CHAMFER-PART takes a PDES description of a part, knowledge of the finishing requirements, and the location of the part, and

plans a sequence of part fixturing and edge chamfering operations for a single part.

PARAMETERS STATUS AGENTS
command name and number echo: command name & number CHAMFERING_ROBOT:= T3

part id -descriptor status:=( running, done, error) - tool attachment

- as-is part entity frame estimated completion time -10 mm positioning accuracy

- to-be part entity frame

coordinate system=robot, fixture, tool

task priority: speed, precision, cost

task duration

system margin of error:

deviation between expected and sensed

- repeatability :5 mm radius

REQUIREMENTS
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INFORMATION BASE

TASK CONFIGURATION
State Clock and Sync Signals

Degree Task Completion:

Modes: (off, single step input, single step output, automatic);

Task Geometry and Clearances: assumed free space motion

Workspace Entity Frames and Maps
Workspace Geometry, Dynamical Model

Workspace Env. Attributes: safety only

Part Entity Frames and Maps
- Part Geometry - PDES spec, fixturing pose

- Part Manipulation Operations : operator handled

- Part State - un/loaded fixture

RESOURCE CONFIGURATTON
- Agent Entity Frames and Maps

-T3: Load kinematic «& dynamic model with tool attached

: Envelope and Payload Limits

- Tool Entity Frames and Maps
- ADT Geometry Offset

- Vise Location

- Fixtures Entity Frames and Maps

PROCEDURAL KNOWLEDGE

BG

JOB ASSIGNMENT
coordinatejigentsJojool Q - insure 1) tool available, 2) agent-tool matable, 3) tool working and energized

coordinatejperatorjnterfacejequests():= ok, not ok, retry, stop, abort;

allocatejesourceslin: agents, tools, job_description; out: job_list); --resources available

PLANNING
partJeaturesGn: part description; out: feature_list: (fitted curve, force)! — extract all the features of the part

extract_feature_geometry: part interpretation, and curve extraction}

scheduleJeatures{in: job_list, priorities; out:job_schedule); — optimization of agents, tools, chamfering parts

process_p/t2n(in:feature_list, out:process_plan) ( - plan “smart” transitions from one feature to the next

smoothing path(in:feature geometry, chamfering_heuristics; out: process_plan);

contingency planningQ:

EXECUTOR
ex.feature_smoothing{in:pTocess_mode\: out: path_model); — this applied slave specific upgrades to process plan

ex.statejxecution(in: path_model, state; out:next_state);

wmEart_GeometryJnterpretation{m:pstci, out: feature_Iist{paths,forces})

- assumes PDES data manipulation routines

wm.chamferingjieuristicsQ ;

- path heuristics model: for smooth transitions along part discontinuities e.g., from curve to edges, comers, etc.

- holistic heuristics model: for optimizing the part fixturing versus chamfering motions (i.e, reduce refixturing.etc)

wm..Chanrfering_Tolerances{in: part(feature+material), agent, chamfering_tool: out: acceptable(T/F));

- is the robot & tool accurate enough to maintain the tolerances necessary for chamfering this tool?

SPAVV
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INFORMATION BASE

TASK CONHGURATION
State Clock

Sync Signals : cyclic timing

Modes: (off, single step input, single step output, automatic);

Degree Command Completion:

Objectives: priorities, cost/benefit parameters

Estimated time to goal-pt or contact

Workspace Map & Entity Frame:

- obstacles- vise stand; finished part table

- geometry & clearances

-Part Entity Frames

- Part Feature Geometry
- Feature Machining Operations - motions, tolerances

RESOURCE CONFIGURATION

-Agent Entity Frame: Geometry, Coordinate System, Motions

T3 Configuration - position, vel, acc limits

T3: Load kinematic & dynamic model with tool attached

T3: Motion Descriptors:.

jfiree-space motion, approach-part motion,

depart-part motion, contact motion

- Tool Entity Frame: Geometry and Tolerances

- ADT Geometry Offset

- Vise Envelope and Tolerances

PROCEDURAL KNOWLEDGE

BG

JOB ASSIGNMENT
job_check[ PDES_FEATURE: interpretation, resolution, and validation)

assignJob_pnor/ne5(motion_priorities);
coordinatejnachineryQ; — insure

PLANNER
gross_motion_generator(\n: part_feature, agent+tool configuration; out motion_list)

{ obstacle_avoidanceO II canned_motion_intrpretationO;

redundancy_resolutionO;

]fine_motion_generator(in: part_feature, agent+tool configuration; out: motion_hst)

{ approachj)artO; H depart_pathO; II initiate_contactO;

)

forceJield (in: part_feature, agent+tool configuration; tool_heuristics; out motion_list)

{
- compute motion forces and tolerance

compute_force5/gains(in: motionjist out: motion_list); - append gains x tangential and normal forces to motion

compute_leeway(in:motion_list; outmotion_list); )
- compute tolerances for error along path

contingency_planning0‘,

{ task_exception(in: problem_description; out: problem_prescription){}; replanQ;}

EXECUTOR
stateJnterpretationO;

logical to device-dependent transformationsQ;

SPAV^

SPIWM:

partjdbJnterfaceO

{
feature_vertices(in: part_feature; out: vertices) II — determine feature c

feature_composition(in:part_feature; out: force_vector); — applied forces based on feature

ObjectiveJunction(in: priorities, plan; out process_plan);

/anem<3nc5(in:t3_configuration; out model);

d'>'nam/c5(in:t3_configuration; out: model)
{
JacobianQ;

coordinate transformationQ

{
part_to_world( in: local_coordinate_frame, type; out: world_coordinate_frame):

)

exceptionJiandlersifn: problem_description; out: problem_prescription);

- arithmetic and mathematical ill-conditioning exceptions





NAME T3->EMOVE.MOVE
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INFORMATION B ASE

TASK CONHGURATION
State Clock

Sync Signals

Modes: (off, single step input, single step output, automatic);

Degree Task Completion:

Objectives: priorities, cost/benefit parameters

Estimated time to goal-pt or contact

Workspace Map & Entity Frames

- obstacles- vise stand; finished part table

- geometry & clearances

T3 Configuration - position, vel, acc limits

T3: Load kinematic & dynamic model with tool attached

T3: Motion Descriptors:.

free-space motion, approach-part motion,

depart-pan motion, contact motion

Tool Entity Frame: Geometry and Tolerances

- ADT Geometry Offset

- Vise Envelope and Tolerances

-Part Entity Frame:

- Part Feature Geometry & Location

- Feature Machining Operations - motions, tolerances

RESOURCE CONFIGURATION
- Agent Entity Frame Geometry, Coordinate System, Motions

PROCEDURAL KNOWLEDGE
JOB ASSIGNMENT
job_check[ PDES_FEATURE: interpretation, resolution, and validation)

assignJob_priorir/e^(motion_priorities);

PLANNER
gross_motion_generator(in: part_feature, agent+tool configuration; out: motion_list{pose,profile})

{ obstacle_avoidanceO II canned_motionO; // either use canned paths or avoid obstacles in real-time

redundancy_resolutionO;

)

BG contingency_planningQ\

{ wmJob_exception(in: problem_description; out: problem_prescription);

replan(in:problem_prescription; out: process_plan}

EXECUTOR
stateJnterpretationQ ;

logicalJo_device_dependentjransformationsQ',

obstaclejivoidanceiiniworkspace+Tohot+tool configuration, cuurent&goal{pt); out: path_points); // future implementation

canned_rrwdon(in:current&goal(pt), out: path_points);

/3ncmaric^(in:t3_configuration; out: model);

dynamic5(in:t3_configuration; out: model)
(
JacobianQ;

coordinate transformation^)

[ part_to_world( in: locaI_coordinate_frame, type; out: world_coordinate_frame); )

exceptionJiandlers{in: problem_description; out: problem_prescription);

SP/WV
’ mathematical ill-conditioning exceptions
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NAME ADT.>COMMAND

INFORMATION BASE

TASK CONHGURATION
State Clock and Sync Signals

Degree Task Completion:

Modes: (off, single step input, single step output, automatic);

Force Feedback:= (disabled, enabled (continuous, sampled);

Water Pump Entity Frame
State:=(on,off)

ADT Entity Frame
Force Profile:

Part Entity Frame

name, type, friction characteristics, stiffness, tolerances
- orientation of normal axis

- tangential force limits

- normal force limits

- gains

- setpoint

Power State: on/off

Spindle Speed:= { analog voltage }

Motors State:= {enabled, disabled};

Servo State:= (enabled, disabled);

Lapsed Time since Bias Reset

PROCEDURAL KNOWLEDGE
JOB ASSIGNMENT:
classifyjo6(in:to-be; out:set/reset/stop/pause/resume);

PLANNING:
decompose_parawzctcr5(in:parameter_list; out:ADT_command_list);

EXECUTOR
commicationjnterfaceim: next_state; out: ADT-command);

await_ackO;

BG
set0‘, - Performs a persistent update of the default parameters.

1) CT sets the orientation of the normal axis relative to the body of the ADT.

2) MH/RB/ESAS/EM/IM home the ADT motors, reset the bias, and enable or inhibit the servos and motors.

3) ED/IO enable or inhibit the continuous force and position data stream from the ADT.

4) POST-FORCES causes a continuous dump of the ADT force and position information to be captured, filtered, and

posted to the WM.
resetQ; - '^C/'^P abort the current command or reset the controller

translate_rpmJo_yoltage(\x\\ rpm; out: ADT_analog_voltage)0;

verify_setting{in: part_model, chamfer_model; out: valid(T/F));

SPAV^
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NAME T3->PRIM.MOVE

INFORMATION BASE

TASK CONHGIJRATION
State Clock and Sync Signals

Degree Task Completion:

Held Tool Geometry

ADT Tool Offset ProfileO;Lxs

configuration

Modes: (off, single step input, single step output, automatic);

RESOURCE CONHGURATION

Agent Entity Frame

Robot Profile: links, lengths, displacements

Forward_Kinematics_model

;

Inverse_Kinematics_model;

Redundancy Configuration;

Gain DB: not needed

PROCEDURAL KNOWLEDGE
Job Assignment

fetch_pose_description(j)osc id); -- get pose id from wm db

Planner

StraightJineJnterpolation(end-points, tool_offset); - given path, produce a set of joint path points

Circularj)ath_interpolations{tnd-pom\s, tool_offset); -- given path, produce a set of joint path points

Quintic_polynomial_path_interpolations{Qnd-pomts, tool_offset); -- given path, produce a set of joint path points

B_spline_path_interpolations{end-pomis, tool_offset); - given path, produce a set of joint path points

BG
Executor

Send_Command{command_naine:=MOWE, desiredjoint values);

Cyclic_ex_process{m: state; out: next_state);

communication_interface{\n:mo\ion_\is\; out: t3_commands); //T3 expects Cartesian or joint commands

SP/W^





NAME PRIM->T3.M0VE.UNTIL

I N FOR M AT J 0 N B A S E

- 19 -

TASK CONFIGURATION
State Clock and Sync Signals

Degree Task Completion;

Modes:(off, single step input, single step output, automatic);

Part Entity Frame

name, type, friction characteristics, stiffness, tolerances

RESOURCE CONFIGURATION

Agent Entity Frame

Robot Profile: links, lengths, displacements

Kinematic Profile;

RESOURCE GEOMETRY
APTWM Interface

observed normal and tangential forces

Held Tool Geometry

ADT Tool Offset ProfileO;Lxs

configuration

PROCEDURAL KNOWLEDGE

BG

Job Assignment

Fetch_Part_Description(part id); - get part id from

WM:ADT:post_forces(on); - (prim talking to prim through world model?)

Planner

Straight_line_interpolation(end-points, tool_offset); — given path, produce a set of joint path points

Force_threshold(part); — determine force threshold, direction, tolerance

Executor

ADT~>readJorcesQ',

Send_Comm^«(f(command_name:=MOVE, desiredjoint values);

forwardJcinematicsQ',

inverseJdnematicsO',

exceedJorceJimit_event(m\ ADT->chamfering_force, force_limit; out: event_wakeup);

SPAV^
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INFORMATION BASE

TASK CONFIGURATION
State Clock and Sync Signals

Modes:(off, single step input, single step output, automatic);

RESOURCE CONHGURATION
Aeent Enpiy Fr^m?

Observed state vector defining pose, velocity, acceleration

Jacobian matrix (not needed)

- inverse kinematic coordiante transform(tool => actuator)

Servo Update frequency: ionterval

Robot update frequency: interval time

Robot links: lengths, displacements, ticks

T3 Communication

- Message Format

- Command Interface

PROCEDURAL KNOWLEDGE

BG

Job Assignment

systemjcheckoiuO — insure system on and responding

Planner

time_interpolate(in: joint_list; out: joint_interp_list) - interpolate point over time interval

Executor

nvc(out: joints) - send desired joints to robot

swc (in: tickJoints) - get current joints from robot

link_control{in: type) — start or acknolwedge link to robot

forward_kinematicsQ)',

inverseJdnematicsQ;

coordinatedJointjnotionQ)',

conversion (in : joint) -- converts current robot joint ticks to angular joints

SPAVIN





NAME SET PUMP/ADT SPINDLE
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IN FOR MAT] ON BASE

PROCEDURAL KNOWLEDGE

BG

JOB ASSIGNMENT
dveice_configureO; - insure device on and ready

command_validate(in:); — check for legal command
PLANNER
assembleJob_list(in: command; out: device_action_list);

EXECUTOR
execute_state_changeO {

execute_device_action_list(i:= 1 ,n):

pump_on(void) { set or reset bit in digital I/O port; } II

pump_off(void) { set or reset bit in digital I/O port; ) II

adt_on(void) { set or reset bit in digital I/O port; ) 11+

adt_off(void) { set or reset bit in digital I/O port; ) II

spindIe_on(void) { set or reset bit in digital I/O port; } II

spindle_off(void) { set or reset bit in digital I/O port; }
II

spindIe_speed(double rpm) { write byte value in analog I/O port;

}

await_(PLC, plc_feedback);

interpret_feedback(in: plc_feedback, out: exception I continue_}

;

SP/WN



ADACS LEXICON for each Level of the NASREM Hierarchy

Level 5 Workstation - INPUT

ex.configure_subsystem{in:v/OTk_schedule, out; subsysteni_configuration);

ex.monitor_work(m: work_schedule, wm.job_status; out; send_next_cmdO);

The execution monitor is responsible for

ja coordinate_resources{m: work_force, job_parts, out work_tools, work_agents)

}a.assign_resources{)n:]o\)j^dx\&‘, work_tools, work_agents, criteria; out job_list{part,tools,agents})

- assign tools/agents to job

pl.assign_schedule(m: job_list(part, agents, tools) time_frame, out job_schedule{part,tool,agent,time))

-- assume part chamfering; 1st come, 1st serve

~ assume tool assignment; 1st available (however since 1 tool is dedicated either busy/available)

wm.monitor_tools(in: tool_status_list; out; report);

wm.monitor_agents(m: agent_status_list; out; report);

sp.analyze_performance{\n: job_list_history; out statistical_analysis);

Level 4 Task

ja.coordinate_agents_tojool Q - insure 1) tool available, 2) agent-tool matable, 3) tool working and energized

ja.coordinate_operator_interface_requests():= ok, not ok, retry, stop, abort;

ja.allocate_resources{in: agents, tools, job_description; out job_list); —resources available

pl.partJeatures{m\ part description; out; feature_list; (fitted curve, force);

- extract all the features of the part

pl.scheduleJeaturesijn: job_list, priorities; out;job_schedule);

- optimization of agents, tools, chamfering parts

process_p/a/i(in;feature_list, out;process_plan);

- plan “smart” transitions from one feature to the next

pi. contingency planningQ;

ex.feature_smoothing{in:pToc&ss_mod€[', out path_model); — this applied slave specific upgrades to process plan

ex.state_execution{in: path_model, state; out;next_state);

wm.Part_Geometry_Interpretation{in:p2trt, out; feature_list{paths,forces))

- assumes PDES data manipulation routines

wm.chamferingJieuristicsO',

- path heuristics model; for smooth transitions along part discontinuities e.g., from curve to edges, comers, etc.

- holistic heuristics model; for optimizing the part fixturing versus chamfering motions (i.e, reduce refixturing,etc)

wm.Charnfering_Tolerances{m-. part {feature+material], agent, chamfering_tool; out; acceptable(T/F));

- is the robot & tool accurate enough to maintain the tolerances necessary for chamfering this tool?

Level 3 Elemental Move

JOB ASSIGNMENT
ja.job_check[ PDES_FEATURE; interpretation, resolution, and validation)

ja. assignJob_priorities{mo\ion_pnonti&sy,
ja. coordinatejnachineryQ-, — insure machinery available and working



pl.gross_motion_generator(m: part_feature, agent+tool configuration; out: motion_list{pose,profile})

The gross motion generator must handle obstacle_avoidance, by using either using canned paths or avoiding obsta-

cles in real-time. The gross motion generator should also handle any kinematic redundancy problems within any

subagents.

pi contingencyjjlanningO',

Handle job exceptions that arise within the task. The contingency planner should take a problem description and if

available prescribe a problem prescription.The contingency planning should take a prescription and replan the pro-

cess plan based on the alternative strategies and recommendations. If no prescription available, then raise an excep-

tion to a higher supervision.

pi fine_motion_generator{m: part_feature, agent+tool configuration; out: motion_list)

pi forceJield (in: part_feature, agent+tool configuration; tool_heuristics; out: motion_list);

— compute motion forces and tolerance

ex.stateJnterpretationO',

ex.logical to device-dependent tran^ormationsQ',

wm. partjdbJnterfaceO

— determine feature and applied forces based on feature

wm.ObjectiveJunction{ixv. priorities, plan; out: process_plan);

H'm./:me/nanc5(in:t3_configuration; out: model);

>vm.(iy/u2w/«(in:t3_configuration; out; model);

wm.coordinate tran^ormationQ

wm.exception_handlers{in: problem_description; out: problem_j)rescription);

— arithmetic and mathematical ill-conditioning exceptions

wm.obstacle_avoidance{m:woTkspacc+Tohot+loo\ configuration, cuurent&goal{pt); out; path_points);

H'm.cfl/merf_/rwtion(in:current&goal{pt}, out: path_points);

Level 2 Primitive

fetch_pose_description(pose id);

- get pose id from wm db

piStraightJineJnterpolationitnd-points, tool_offset);

- given path parameters, produce a set of joint path points

piCircular_path_interpolations(parzmeteTS, tool_offset);

- given path parameters, produce a set of joint path points

pl.Quinticjjolynomial_path_interpolations(end-po'mts, tool_offset);

- given path, produce a set of joint path points

piB_spline_path_interpolations{ei:\d-poin\s, tool_offset);

- given path, produce a set of joint path points

piforcejhresholdipait)

;

- determine force threshold, direction, tolerance

ex.Send_Command{command_mme:=MOVE, desiredjoint values);

ex.Cyclicjex_process{m: stale; out; next_state):

ex.T3communication_interface{in:moiion_hsv, out: t3_commands);

- T3 expects Cartesian or joint commands

wmforwardJdnematicsO ;

wm.inverseJcinematicsO',

wm.exceedJorceJimit_event(\n: ADT->chamfering_force, forcejimit; out: event_wakeup);



Level 1 Servo

ja.systemjcheckoutO - insure systeni on and responding

pl.timejnterpolateiin: joint_list; out: joint_interp_list) - interpolate point over time interval

ex.communication(

- send desired joints to robot; for T3 ex.rwc{ont: joints) -

- get current joints from robot; for T3: ex.swc (in: tickJoints) -
- start or acknowledge link to robot: for T3: link_control(in: type) --
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(*

EXPRESS SCHEMA FOR ADACS TASKS AND GEOMETRY
T. Kramer
revised January 30, 1992

This file contains four schemas needed for ADACS (Advanced Deburring
And Chamfering System) . All four schemas use EXPRESS version N14 of
April 1991. All four schemas pass through the FedEx parser (January
28, 1992 version) without error.

1. adacs_actions - The nature of the adacs_actions schema is described
where the schema starts.

2. adacs_geometry - This schema contains entities and types used for
describing geometric things lilce chamfer_faces and robot trajectories.
This schema builds on the STEP geometry and topology schemas. The
purpose of this schema is to support the adacs_actions schema.

3
.
geometry - This is a portion of the STEP geometry schema, version

N87 of June 1991. It defines entities needed in the adacs_geometry
schema. “Where" rules and “derive" clauses have been deleted.

4. topology - This is a portion of the STEP topology schema, version
N87 of June 1991. It defines entities needed in the adacs_geometry
schema. "Where" rules and "derive" clauses have been deleted.

Each schema may have three parts: (1) interface clauses, (2) type
definitions, and (3) entity definitions. The first two are not always
present. The type and entity definition sections are arranged
alphabetically

.

This file is intended to be parsable, so it is full of EXPRESS comment
characters

.

As compared with the December 18, 1991 version of these schemas, there
are two major substantive change, one major format change, and several
minor additions and changes.

First Major Substantive Change - The ALPS schema has been deleted. It

has been decided in the initial implementation of the ADACS control
system to use sequentially executed process plans, so that the
complicated facilities of ALPS for handling control flow are not
needed. A single entity (adacs_plan) and a type (nasrem_level ) have
been added to replace ALPS. Instead of using the "PrimitiveTaslcNode"
of ALPS as the top of the hierarchy of ADACS taslcs, a new entity,
"adacs_action" has been added at the top of the adacs_actions schema.
After the initial implementation of the ADACS control system is

complete, the question of whether a high-level process plan language
(such as ALPS) is needed will be reconsidered. It is intended that
plans will be written in STEP physical files. The currently available
STEP tools all use the "Tolcyo" version of the specification for STEP
physical files, so that version will be used.

Second Major Substantive Change - The chamfer_path entity and all its
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subtypes have been deleted, and the functionality of these entities
has been incorporated in the chamfer_face entities and its subtypes.

Major Format Change - Entities and types used for describing geometric
things like chamfer faces and robot trajectories have been taken out
of the ABACS schema and put into a separate adacs_geometry schema.

Other Changes -

A. Added tasks
1. ABACS E-move level: move_t3
2. ABACS Servo level: adt_set_speed, t3_servo, t3_control_on,

t3_control_of f , t3_power_on, t3_power_of f , t3_move_to

B. The format for names has been changed so it is not case-sensitive.
Instead of using capital letters to separate the parts of a name,

underscores are used. Only lower case letters are used here.

C. Supertype statements have been added to all schemas to make it easy
to trace the hierarchies downwards, except where a supertype is in

a separate schema.

*)

^*************************************************************************j
^*************************************************************************j
^*************************************************************************j

(* START ABACS_ACTIONS SCHEMA *)

(*

Only definitions of tasks and definitions of the non-geometric things
needed to support the tasks (such as tools and workpieces) are
included here. Geometric things that are used in this schema are
included in the adacs_geometry schema.

The tasks defined here are intended to be useable both in process
plans and in commands given to ABACS controllers to carry out process
plans. In order to serve both uses, some tasks have attributes (such
as the identity of a specific workpiece) that are optional because
they are known at execution time but not at planning time.

The top-level node type for ABACS tasks is adacs_action, which
has four subtypes, one for each control level covered by the schema.

It is implicit in this schema that the ABACS workstation will include
one robot and one ABT and that the tool in the ABT will not be changed
during a single chamfer_part operation.

The ABT is a single physical device that corresponds to two logical
devices in the NASREM model: a sensory system and an agent that
executes tasks . This schema deals only with tasks for agents that
execute tasks. Thus, no tasks for getting data from the ABT have been
included here, even though commands must be given to the ABT to get
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data from it. It is assumed that the ABACS controllers will share the
physical communication link to the ADT with the ABACS sensory
processing and world modeling (SPWM) module (s) that need to
communicate with the ABT, and the SPWM modules will deal with the ABT
when data is needed. If taking turns giving commands to the ABT proves
unworkable or clumsy, then additional definitions may be added to this
schema for getting data from the ABT, making getting data an
executable task.

It has been decided to have initialization and shutdown be accomplished
throughout ABACS by commands issued by the controllers. Thus, this
schema contains a lot of commands for this purpose. The alternative
would be to treat initialization and shutdown outside of the normal
command system. If a switch is made to this alternative, many commands
defined here could be deleted.

The entities in this schema consist of a hierarchy of adacs_actions plus
three other entities (adacs_plan, chamfer_list , and design_id) that are
not adacs_actions

.

The hierarchy of adacs_actions is as follows:

adacs_act ion
adacs_e_move

adacs_e_move_shutdown
adacs_e_move_startup
chamfer_feature
f ixture_part
unf ixture_part

adacs_primitive
adt_primit ive

adt_apply_force
adt_shutdown
adt_startup

t3_primitive
t3_move

1 3_move_unt i

1

t3_shutdown
t3_startup

adacs_task
adac s_t ask_shutdown
adacs_task_startup
chamfer_part

adacs_servo
adt_servo

adt_control_of f

adt_control_on
adt_power_of f

adt_power_on
adt_pump_of f

adt_pump_on
adt_set_coordinate_rotat ion
adt_set_gains
adt_set_setpoint
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adt_set_speed
adt_spindle_of

f

adt_spindle_on
t3_servo

t3_control_of

f

t3_control_on
t3_inove_to

t3_power_of f

t3_power_on

*)

SCHEMA adacs_actions

;

^*************************************************************************)
(************************************************************************)

(* START ADACS_ACTIONS INTERFACE CLAUSES *)

USE FROM adacs_geometry (chamfer_face, pose, trajectory)

;

(* END ADACS_ACTIONS INTERFACE CLAUSES *)

^*************************************************************************j
(***********************************************************************)

(* START ADACS_ACTIONS TYPE DEFINITIONS *)

( * chainfer_inst ruction ***************************************************

A chamfer_instruction is either a chamfer_string (a TYPE) or
a chamfer_list (an ENTITY)

.

TYPE chamfer_instruct ion = SELECT (chamfer_string, chamfer_list )

;

END_TYPE;

( * chamfer_string ********************************************************

This is a string describing in English what sort of chamfers to make.
It is not intended to be machine-usable, so there are no syntax or
grammar requirements.

Example: "Chamfer all hole edges half a millimeter"

*)

TYPE chamfer_string = STRING;
END_TYPE;

( * f ixture_id ***********************************************************

This identifies a specific physical object which is a fixture. It is like
an inventory number

.

*)
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TYPE fixture_id = STRING;
END_TYPE;

( * nasrem_level **********************************************************

This identifies the hierarchical level of a plan. The choice is one of
the six standard NASREM levels.

*)

TYPE nasrem_level = ENUMERATION OF
(cell

,

workstation,
task,
e_n»ove

,

primitive,
servo)

;

END_TYPE;

(* plan_id ***************************************************************

This identifies a process plan.

*)

TYPE plan_id = STRING;
END_TYPE;

( * tool_id ***************************************************************

This identifies a specific physical object which is a tool. It is like
an inventory number

.

*)

TYPE tool_id = STRING;
END_TYPE;

( * tool_type_id **********************************************************

This identifies a type of tool. It is like a catalog number.

*)

TYPE tool_type_id = STRING;
END_TYPE;

( * workpiece_id **********************************************************

This identifies a specific physical object.

*)

TYPE workpiece_id = STRING;
END_TYPE;
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(* END ADACS_ACTIONS TYPE DEFINITIONS *)

(*******************************************************************)
(**************************************************************)
(* START ADACS_ACTIONS ENTITY DEFINITIONS *)

( * adacs_act ion **********************************************************

This is the top level entity for ADACS tasks. An adacs_action may be a

step in a process plan or it may be a command. This entity serves as

the supertype of tasks at four specific control levels.

It has only one attribute, a sequence number. It is intended that
sequence numbers be assigned to plan steps or commands in numerical
order (starting with 1) and that they be executed in this order.

It may be desirable to add more attributes.

*)

ENTITY adacs_action
SUPERTYPE OF (ONEOF

( adacs_e_move

,

adacs_primitive,
adacs_task,
adacs_servo) )

;

sequence_number : INTEGER

;

END_ENTITY

;

( * adacs_e_move ***********************************************************

This is the ADACS top-level node type for the E-Move level. It serves
only as a single supertype for all E-Move level level nodes and has no
attributes

.

*)

ENTITY adacs_e_move
SUPERTYPE OF (ONEOF

( adacs_e_move_shutdown

,

adacs_e_move_startup,
chamfer_feature

,

f ixture_part

,

unf ixture_part )

)

SUBTYPE OF (adacs_action)

;

END_ENTITY

;

( * adacs_e_move_shutdown **************************************************

This shuts down the E-move level controller. After this command is

received, the only command that may be given is a startup. Any other
command will be ignored. More typically, of course, the shutdown
command will be followed by powering down the system. When the
shutdown command is received. Primitive level shutdown commands will
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be given to the ADT and T3 Robot

.

*)

ENTITY adacs_e_inove_shutdown SUBTYPE OF (adacs_e_move ) ;

END_ENTITY;

( * adacs_e_move_startup ***************************************************

This starts up the E-move level controller so it is ready to accept
other commands. After the controller is powered up and reaches a state
where it can read commands, any other command will be ignored until
this command is given. When this command is received, Primitive level
startup commands will be given to the ADT and T3 Robot.

*)

ENTITY adacs_e_move_startup SUBTYPE OF {adacs_e_move)

;

END_ENTITY;

( * adacs_plan *************************************************************

This is the entity which collects adacs_actions together into a plan, in

case it is desired to formulate an entire plan. It is implicit here that
all the steps in the plan will be executed sequentially in the order
given by the list of steps.

All the steps must be subtypes of the type appropriate for the given
control_level . If control level is task, all steps must be subtypes of
adacs_task. If control level is e_move, all steps must be subtypes of
adacs_e_move . Etc

.

The string which is the header should contain information such as

who wrote the plan, when it was written, what version this is, etc.

It may be desirable to formalize more detail in the header, eventually.

*)

ENTITY adacs_plan;
identity; plan_id;
header: STRING;
control_level : nasrem_level

;

steps: LIST [1 : ?] OF adacs_action;
END_ENTITY

;

( * adacs_pr imi t ive ********************************************************

This is the ADACS top-level node type for the Primitive level. It

serves only as a single supertype for all Primitive level nodes and
has no attributes.

*)

ENTITY adacs_primitive
SUPERTYPE OF (ONEOF



( adt_pr imi t ive

,

t3_primitive)

)

SUBTYPE OF (adacs_action)

;

END_ENTITY

;

(* adacs_servo ************************************************************

This is the ABACS top-level node type for the Servo level. It serves

only as a single supertype for all Servo level nodes and has no
attributes

.

*)

ENTITY adacs_servo
SUPERTYPE OF (ONEOF

(adt_servo,
t3_servo)

)

SUBTYPE OF {adacs_action)

;

END_ENTITY;

(* adacs_task *************************************************************

This is the ABACS top-level node type for the task level. It serves
only as a single supertype for all task level nodes and has no

attributes

.

*)

ENTITY adacs_task
SUPERTYPE OF (ONEOF

(adacs_task_shutdown,
adacs_task_startup,
chamfer_part )

)

SUBTYPE OF (adacs_action)

;

ENB_ENTITY

;

( * adacs_task_shutdown ****************************************************

This shuts down the Task level controller. After this command is

received, the only command that may be given is a startup. Any other
command will be ignored. More typically, of course, the shutdown
command will be followed by powering down the system. When the
shutdown command is received, an E-move level shutdown command will
be given to the E-move controller.

*)

ENTITY adacs_task_shutdown SUBTYPE OF (adacs_task)

;

ENB_ENTITY

;

( * adacs_task_startup *****************************************************

This starts up the Task level controller so it is ready to accept
other commands. After the controller is powered up and reaches a state
where it can read commands, any other command will be ignored until
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this command is given. When this command is received, an E-move level
startup command will be given to the E-move controller.

*)

ENTITY adacs_task_startup SUBTYPE OF {adacs_task)

;

END_ENTITY;

( * adt_apply_force ********************************************************

It is anticipated here that the form of the control law for the ADT
will not be changed (although values of the parameters in the law may-

be reset), so that the law itself does not need to be communicated.

It is also assumed that the ADT will always be turned on with coolant
flowing and the spindle turning when it is used, so that these
conditions do not need to be specified at the Primitive level.

)

ENTITY adt_apply_force SUBTYPE OF {adt_primitive)

;

angle: INTEGER;
normal_force_gain : INTEGER;
normal_position_ga in : INTEGER
tangential_force_gain : INTEGER
tangent ial_pos it ion_gain : INTEGER

WHERE

normal_force

:

normal_position

:

tangential_force

:

tangential_position

;

spindle_speed

:

normal_force_gain
0

normal_pos i t ion_gain
0

tangent ial_force_gain
0

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

<= normal_force_gain

;

<= 3000 ;

<= normal_position_gain;
<= 1000 ;

<= tangential_force_gain;
<= 3000 ;

<= tangential_position_gain;
tangent ial_pos it ion_gain <= 1000;
-4000

norma l_force
-1150

norma l_pos it ion
-4000

tangent ial_force
-1150

tangent ial_pos it ion

spindle_speed
END_ENTITY;

<= normal_force

;

<= 4000 ;

<= normal_position;
<= 1150 ;

<= tangent ial_force;
<= 4000 ;

<= tangential_position;
<= 1150 ;

<= spindle_speed;
<= 90000 ;

;* adt control off ********************************************************

This shuts down the application of the ADT control law.
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*)

ENTITY adt_control_of f SUBTYPE OF (adt_servo)

;

END_ENTITY;

( * adt_control_on *********************************************************

This starts application of the ADT control law. If the gains and set
point have not been explicitly set, they take on default values when
this is issued. All four gains default to 1000. The other six parameters
from adt_apply_force all default to 0.

*)

ENTITY adt_control_on SUBTYPE OF (adt_servo)

;

END_ENTITY;

( * adt_power_o ff **********************************************************

This turns off power to the ADT. The spindle will not keep turning
and the ADT will not follow its control law when the power is off.

This command does not affect the pump.

*)

ENTITY adt_power_of f SUBTYPE OF (adt_servo)

;

END_ENTITY;

( * adt_power_on **********************************************************

This turns on power to the ADT. The spindle cannot be turned on and
the ADT cannot be enabled unless the power is on, but turning on the
power neither starts the spindle nor enables the ADT.

ENTITY adt_power_on SUBTYPE OF (adt_servo)

;

END_ENTITY;

( * adt_pr imi t ive **********************************************************

This is a subtype of adacs_primitive to be directed to the ADT.

ENTITY adt_primitive
SUPERTYPE OF (ONEOF

( adt_apply_force

,

adt_shutdown

,

adt_startup)

)

SUBTYPE OF {adacs_primitive)

;

END_ENTITY

;
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( * adt_puinp_of f

Turns off water pump for the ADT. This is independent of whether ADT
power is on or off.

*)

ENTITY adt_pump_of f SUBTYPE OF {adt_servo)

;

END_ENTITY;

( * adt_pump_on ************************************************************

This turns on the water pump for the ADT. This is independent of

whether ADT power is on or off.

*)

ENTITY adt_pump_on SUBTYPE OF (adt_servo)

;

END_ENTITY;

( * adt_servo **************************************************************

A suite of ADT Servo commands is defined in this schema to match the
commands that can actually be given to the ADT. They are all subtypes of

this adt_servo command. In two cases, a single command here would
break down into four commands for the ADT.

There are no ADT Servo commands here corresponding to “RB“ (reset bias) or
"MH" (motor home) . If it is planned to use these, commands will be added
to this schema.

As discussed at the beginning of this schema, there are also no ADT
Servo commands for getting data from the ADT.

ENTITY adt_servo
SUPERTYPE OF (ONEOF

( adt_cont rol_of f

,

adt_control_on

,

adt_power_of f

,

adt_power_on

,

adt_pump_of f

,

adt_pump_on

,

adt_set_coordinate_rotation,
adt_set_gains

,

adt_set_setpoint

,

adt_set_speed,
adt_spindle_of f

,

adt_spindle_on )

)

SUBTYPE OF (adacs_servo)

;

END_ENTITY;

( * adt_set_coordinate_rot a t ion ********************************************
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This rotates the coordinate system in which the ADT setpoint is

expressed and forces are measured by the given angle (in degrees) from
its default position with respect to the body of the ADT. The angle
may be any integer, positive or negative.

*)

ENTITY adt_set_coordinate_rotation SUBTYPE OF (adt_servo)

;

angle: INTEGER;
END_ENTITY;

(* adt_set_gains

This sets the four gains in the ADT control law. The form of the law is

fixed.

ENTITY adt_set_gains SUBTYPE OF
normal_force_gain

:

normal_position_ga in

:

tangential_force_gain

:

tangential_position_gain

:

(adt_servo)

;

INTEGER;
INTEGER;
INTEGER;
INTEGER;

WHERE
0 < =

normal_force_gain <=

0 < =

normal_position_gain <=

0 < =

tangential_force_gain <=

0 < =

tangential_position_gain <=

normal_force_gain;
3000 ;

normal_position_gain;
1000 ;

tangent ial_force_gain

;

3000 ;

tangent ial_pos it ion_ga in;
1000 ;

END_ENTITY

;

( * adt_set_setpoint ********************************************************

This sets the ADT setpoint in terms of the current coordinate system.
The units for positions are thousandths of centimeters.
The units for force are millinewtons

.

ENTITY adt_set_setpoint SUBTYPE OF (adt_servo)

;

normal_force : INTEGER;
normal_position : INTEGER;
tangent ial_force : INTEGER

;

tangential_position : INTEGER;
WHERE

-4000

norma l_force
-1150

normal_position
-4000

tangent ial_force
-1150

<= normal_force

;

<= 4000 ;

<= normal_position;
<= 1150 ;

<= tangential_force;
<= 4000 ;

<= tangential_position;
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tangent ial_pos it ion <= 1150;
END_ENTITY

;

(* adt_set_speed **********************************************************

This sets the spindle speed (in rpm) at which the ADT will turn when it

is on

.

*)

ENTITY adt_set_speed SUBTYPE OF (adt_servo)

;

speed: INTEGER;
WHERE

0 <= speed;
speed <= 90000;

END_ENTITY;

( * adt_shutdown ***********************************************************

This is a Primitive level command for shutting down the ADT. When this
command is received, the Primitive level ADT controller sends adt_spindle_of f

,

adt_control_of f , adt_power_of f , and adt_pump_off commands to the ADT Servo
level controller.

*)

ENTITY adt_shutdown SUBTYPE OF ( adt_primit ive )

;

END_ENTITY

;

( * adt_spindle_of f ********************************************************

This turns off the spindle.

*)

ENTITY adt_spindle_of f SUBTYPE OF (adt_servo)

;

END_ENTITY;

( * adt_spindle_on *********************************************************

If the ADT power is on, this turns on the spindle. It will turn at the
rate that is set by adt_set_speed . If no adt_set_speed command has been
given, the speed defaults to zero.

*)

ENTITY adt_spindle_on SUBTYPE OF (adt_servo)

;

END_ENTITY;

( * adt_startup ************************************************************

This is a Primitive level command for starting up the ADT. When this
command is received, the Primitive level ADT controller sends
adt_pump_on, adt_power_on, and adt_control_on commands to the ADT Servo
level controller. The adt_spindle_on command is not given.
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*)

ENTITY adt_startup SUBTYPE OF (adt_primitive)

;

END_ENTITY;

( * chamfer_feature ********************************************************

This produces one chamfer_face

.

This does not require identification of a tool or workpiece, since that
has been done in chamfer_part

.

chamfer_to_make - Referencing a chamfer_face (as defined in the
adacs_geometry schema) seems preferable to referencing a STEP feature
since the chamfer_face provides a sufficient description of the
chamfer to be produced. The STEP edge_flat feature from the Form
Features Information Model comes close to being usable but does not
have several of the desired characteristics.

spindle_speed - It is assumed that spindle speed for the ADT will be
constant throughout a chamfer_feature operation. The value of the
speed is given in rpm by this attribute.

chamfer_feature_plan_id - If a process plan has already been made giving
a series of tasks for the Primitive level that will produce the
chamfer_face, this identifies it. If the controller executing a

chamfer_feature command is expected to determine tasks for subordinates
in real time, this attribute has no value.

The scenario assumed here for chamfer_feature is that several passes
may be required to make a single chamfer_face . In each pass, (1) the
ADT will have its set point set so it will not contact the part at the
start of the pass (2) the robot will move the ADT to the robot start
point for the pass, (3) the ADT set point will be changed to bring the
tool into contact with the part, (4) the robot will move the ADT
through a trajectory (series of poses) to do some chamfering, (5) the
robot will move the ADT away from the part.

Variations on the five items are possible. It may turn out to be
better to use the robot to bring the ADT into contact with the part
than to have the ADT move itself. It is not expected that resetting
ADT parameters will be done during the portion of a pass in which the
ADT is in contact with the part (step 4 above) . If other techniques do
not work, this may be tried.

chamfer_feature may be thought of as decomposing into either a series
of passes (each of which is comprised of a series of ADT and robot
tasks) or into a series of ADT and robot tasks (which is simply all
the ADT and robot tasks for the passes taken in order) . This schema
does not formalize the decomposition into passes. It may turn out to
be desirable to do this, but it does not now seem necessary.

*)

- 14 -



ENTITY chaitifer_feature SUBTYPE OF (adacs_e_move) ;

chamfer_to_make : chamfer_face;
spindle_speed : INTEGER;
chamfer_feature_plan_id : OPTIONAL plan_id;

WHERE
0 <= spindle_speed;
spindle_speed <= 90000;

END_ENTITY;

( * chamfer_list ************************************************************

The list of chamfer_faces given here is expected to contain entity
references from the design. However, the design is expected to be kept
separate from the chamfer_list (in a separate file, for example). A
convention for identifying physical files (or for partitioning a

database) will be required so that the two files (or database parts)
can work together.

The lower bound for number of faces in a chamfer_list might be raised
to 1, but it seems convenient to be able to write an empty list -

might be useful in dry runs.

*)

ENTITY chamfer_list

;

part_design

:

chamfers

:

END_ENTITY;

( * chamfer_part ************************************************************

part_id - identifies a specific workpiece to be chamfered. There may
be many workpieces made according to the same design. This attribute
must have a value in a command, but does not need one in a process
plan. The description of the workpiece that may be retrieved from
knowing its part_id should include identification of its design and
its location. The design of the workpiece should be the same as the
design designated by the part_design attribute.

part_design - identifies the design for the part being chamfered. It

is expected that STEP boundary representation designs will be used and
may be identified by a design_id.

tool_type - identifies a specific type of tool (like a catalog number).
It is expected that the tool will not be changed during the chamfering
of the part. If more than one tool is to be used, separate chamfer_part
tasks will be required. Since this attribute is given here, it is not

needed in the chamfer_feature entity.

tool - identifies a specific physical tool (like an inventory number).
This is optional and is expected to have a value in a command but not

normally in a process plan.

chamfers - A description of the chamfers to make.

design_id;
LIST [0:?] OF chamfer_face;
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chamfer_part_plan_id - If a process plan has already been made giving a

series of tasks for the E-move level that will chamfer the part, this
identifies it. If the controller executing a chamfer_part command is

expected to determine tasks for subordinates in real time, this
attribute has no value.

Some information might be expected in this task but is not included:
1. The location of the workpiece - this may be retrieved by knowing

the part_id.
2. The fixturing of the part - If a chamfer_part_plan has been prepared,

fixturing specifications will be included as part of the plan. If a

plan has not been prepared, it is expected that a decision on how to
fixture the part will not have been made.

*)

ENTITY chamfer_part SUBTYPE OF (adacs_task)

;

part_id: OPTIONAL workpiece_id;
part_design: design_id;
tool_type: tool_type_id;
tool: OPTIONAL tool_id;
chamfers: chamfer_instruction;
chamfer_part_plan_id : OPTIONAL plan_id;

END_ENTITY;

( * design_id *************************************************************

This identifies the name of the design and its version. It is expected
that this information will be sufficient to select the design from a

design database.

It might be nice to replace this with an Entity that serves the same
purpose from STEP Application Protocol 203, Configuration Controlled
Design

.

*)

ENTITY design_id;
name: STRING;
version: STRING;

END_ENTITY;

( * f ixture_part ***********************************************************

This command is given to the E-move level by the Task level. It is to
be executed by a human.

It is assumed that given the part and the fixture, there are no
further degrees of freedom, and the the human will know how to do the
job. If there are more degrees of freedom, such as position within the
fixture, this entity will have to be changed. 'An attribute might be
added whose value is a string giving fixturing instructions.
Alternatively, there might be an attribute that identified a file of
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fixturing instructions.

get_from - This string should describe in English where to get the part
from.

*)

ENTITY f ixture_part SUBTYPE OF {adacs_e_move)

;

part_id: workpiece_id;
fixture: fixture_id;
get_from: STRING;

END_ENTITY

;

(* t3_control_of f *********************************************************

*)

ENTITY t3_control_of f SUBTYPE OF (t3_servo)

;

END_ENTITY;

( * 1 3_control_on *********************************************************

*)

ENTITY t3_control_on SUBTYPE OF (t3_servo)

;

END_ENTITY;

( * 1 3_move ****************************************************************

All T3 moves require a trajectory. In a t3_move, the robot simply
follows the trajectory from the beginning to the end. It is expected
that the robot will already be in the first pose of the trajectory
when this command is given.

It is intended that t3_move be instantiable, even though it has a

subtype ( t3_move_until ) , so the format of the supertype statement
differs from that of other supertype statements.

*)

ENTITY t3_move
SUPERTYPE OF ( t3_move_until

)

SUBTYPE OF (t3_primitive)

;

robot_path: trajectory;
END_ENTITY;

{ * 1 3_move_to ************************************************************

This moves the robot from its current position to the given pose. It

does not specify velocity or acceleration when the pose is reached or

during the move.

*)
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ENTITY t3_inove_to SUBTYPE OF (t3_servo) ;

robot_posit ion
:

pose;
END_ENTITY

;

( * t3_move_unt il *********************************************************

In this cominand the robot moves along the given trajectory until either
it reaches the end or until the ADT force vector goes outside a

rectangular envelope.

*)

ENTITY t3_move_until SUBTYPE OF (t3_Move)

;

low_normal: INTEGER;
high_normal : INTEGER;

low_tangential : INTEGER;
high_tangent ial : INTEGER;

WHERE
0 <= low_normal;
low_normal <= 3000;
0 <= high_normal;
high_normal <= 3000;

0 <= low_tangent ial

;

low_tangential <= 3000;
0 <= high_tangential

;

high_tangent ial <= 3000;
END_ENTITY;

{ * 1 3_power_o ff ***********************************************************

*)

ENTITY t3_power_off SUBTYPE OF (t3_servo)

;

END_ENTITY;

( * 1 3_power_on ***********************************************************

*)

ENTITY t3_power_on SUBTYPE OF (t3_servo)

;

END_ENTITY

;

( * t3_primitive ***********************************************************

This is subtype of adacs_primitive to be directed to the T3 robot. It serves
only as a supertype for other Primitive level robot tasks.

*)

ENTITY t3_primitive
SUPERTYPE OF (ONEOF

( t3_move

,

t3_shutdown,
t3_startup)

)
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SUBTYPE OF (adacs_primitive)

;

END_ENTITY;

(* t3_servo ***************************************************************

This is subtype of adacs_servo to be directed to the T3 robot . It serves
only as a supertype for other Servo level robot tasks.

*)

ENTITY t3_servo
SUPERTYPE OF (ONEOF

(t3_control_of f

,

t3_control_on,
t3_move_to,
t 3_power_o f f

,

t3_power_on)

)

SUBTYPE OF (adacs_servo)

;

END_ENTITY;

( * t3_shutdown ************************************************************

This shuts down the Primitive level T3 robot controller. After this
command has been received, the only command the controller will
execute is a startup. Normally this command will be followed by
powering down.

*)

ENTITY t3_shutdown SUBTYPE OF (t3_primitive)

;

END_ENTITY;

( * t3_startup *************************************************************

This starts up the Primitive level T3 robot controller after it has
been powered up and reached a state where it can read commands. This
must be the first command given to the controller after it reaches
that state. Any other command will be ignored.

*)

ENTITY t3_startup SUBTYPE OF ( t3_primit ive )

;

END_ENTITY

;

( * unf ixture_part *********************************************************

This command is given to the E-move level by the Task level. It is to

be executed by a human. When this command is given, the part is

removed from the fixture and put in the location described by the put_at
string

.

put_at - This string describes in English where to put the part after it

is removed from the fixture.

*)
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ENTITY unf ixture_part SUBTYPE OF (adacs_e_inove ) ;

part_id: workpiece_id;
put_at : STRING;

END_ENTITY;

(* END ABACS ENTITY DEFINITIONS *)

^*************************************************************************j
(**********************************************************************)

END_SCHEMA;

(* END ADACS_ACTIONS SCHEMA *)

^*************************************************************************j
^*************************************************************************j
^*************************************************************************)

(* START ADACS_GEOMETRY SCHEMA *)

(*

This schema contains three
of entities for describing

entities for robot positioning and a bunch
chamfer_faces

.

The rest of the text here, before EXPRESS statements start, explains
the meaning of a chamfer_face , its subtypes, and the entities needed
to describe a chamfer_face . In this text, "face", "surface", "edge",

" edge_logical_structure " , "curve", and "curve_logical_structure" will
have the meanings given by STEP geometry and topology. A surface
produced by chamfering will be called a " chamfer_sur face" in the text,

although chamfer_surface is not defined in the EXPRESS statements.

An informal description of the entities used here from STEP geometry
and topology follows. Their EXPRESS description is given below.

curve - A curve is the path of a point moving in space. Straight lines
and circles are examples of curves. Every curve has a built-in
direction of travel along the curve which can be determined from the
data describing the curve.

curve_logical_structure - A curve_logical_structure is a curve with a

direction flag which can be true or false. If the flag is true, you
are moving in the direction of the curve. If the flag is false you are
moving in the opposite direction.

edge - An edge is a piece of a curve bounded by two vertexes (points)

.

It is defined with a curve_logical_structure to indicate whether
you go in the same direction as the curve when moving along the curve
from the start vertex to the end vertex. The start and end may be in

the same place, as would be the case if you went all the way around a

circle

.

edge_logical_structure - An edge_logical_structure is an edge with a
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direction flag which can be true or false. If the flag is true, you
are moving along the edge from the start vertex to the end vertex.
If the flag is false you are moving from the end vertex to the start
vertex.

face - A face is a piece of a surface bounded by a loop of
edge_logical_structures

.

surface - A surface is a two-dimensional sheet in 3D space. Planes
and the outer boundaries of spheres and cylinders are examples of
surfaces

.

Intuitively, a chamfer_face is the flattish face (or faces) produced
by scraping material off an edge (or edges) using a straight-edged
tool. We will use a logical procedural description of a chamfer-face.
Such a description is useful in determining what operations are
required to make the chamfer_face , but the logical procedures should
not be confused with procedures for using a chamfer tool.

A boundary representation description of a chamfer_face is apt to
require a great deal of complex data and is not much use in

determining how to make the chamfer_face, so we usually will want to
avoid using such a description. If a boundary representation is

desirable (when a closeup of a chamfer_face is to be drawn, for
example) , it will be logically possible to produce it, although it may
be computationally difficult.

The data defining a chamfer_face consists of a list of

edge_logical_structures (the list may contain only one element), plus
the depth of the chamfer and specification of a normal vector at each
point of the edge(s). In addition, if the chamfer_face is open (i.e.

it does not form a loop) , specifications for ramping from zero depth
to the given depth at the beginning of the chamfer_face and back out
again at the end may optionally be given.

It is expected that the edge_logical_structures will be present in the
boundary representation of the unchamfered part. The elements of the
list of edge_logical_structures must represent directed edges that
meet with the end vertex of element n being the start vertex of

element n+1. If the chamfer_face is closed, the start vertex of the
first element must also be the end vertex of the last element.

All chamfer_surfaces will be ruled surfaces (planes, cones, and
cylinders, for example) where the ruling lies in a plane perpendicular
to the edge being chamfered. A ruled surface is one that can be swept
out by a straight line moving along a path. The nominal surfaces made
by a conical or cylindrical chamfer tool used in typical chamfering
operations are usually ruled surfaces of the sort just described.
(Actual surfaces are generally more rounded than nominal surfaces if

the chamfering is done by hand.)

It is expected that each chamfer will have constant depth. The depth
is measured from the path in the direction of the chamfer_surface
normal

.
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Open and closed subtypes of chamfer_face are given in this schema.

The standard fixed rule for the normal to a chamfer_surface will be:

at each point on an edge being chamfered, the normal to the chamfer
surface will lie in a plane perpendicular to the edge and will make
equal angles with the normals to the surfaces on either side of the
path at that point. This is the most usual way of making a chamfer.
This rule will need some elaboration regarding the treatment of sharp
corners of a path and treatment of joints of the path where the
direction of the normal to the chamfer_surface would jump
discontinuous ly from one value to another.

Only edges between surfaces which meet convexly can be chamfered.

It would be possible to have other methods of specifying chamfers such
as by allowing variable depth or different rules regarding the normal
to the chamfer_sur face, but these do not seem needed. The simplest
elaboration would be to have a parameter to specify the ratio of (1)

the angle of the chamfer_surface normal with the normal to the surface
on one side of the edge being chamfered to (2) the angle of the
chamfer_surface normal with the normal to the surface on the other
side. The standard rule given above has this ratio always equal to
one

.

*)

SCHEMA adacs_geometry

;

^*************************************************************************j
^*************************************************************************j

(* START ADACS_GEOMETRY INTERFACE CLAUSES *)

USE FROM geometry_schema (circle, direction, line);

USE FROM topology_schema
(curve_logical_structure,
edge_logical_structure)

;

(* END ADACS_GEOMETRY INTERFACE CLAUSES *)

^*************************************************************************j
^*************************************************************************j

(* START ADACS_GEOMETRY ENTITY DEFINITIONS *)

(* chamfer_face ***********************************************************

See the discussion at the beginning of this schema.

normal_spec - It is not expected that normal_spec will need to be used
in the ADACS project. It is included here for generality. The length
of the normal_spec list, if used, must be the same as the length of
the chamfer_path list (could add a "where" rule that says this) , and
the nth elements of the two lists go together. The string which is

the nth element of the normal_spec list would be a real-valued

- 22 -



function of one real variable with domain from 0 to 1 . The value of
the function would give the deviation in radians of the normal to the
path from its standard direction, as described above. The normal
would always lie in a plane perpendicular to the edge at a point on
the edge. The angle would be positive in the counterclockwise
direction, when facing in the positive direction of the
edge_logical_structure and looking at that plane. The value of the
variable in the function would represent the fraction of the distance
from the start vertex to the end vertex of the point on the nth
edge_logical_structure for which the normal is given by the equation.

If it is desired to make the depth of the chamfer variable, a

"depth_spec“ attribute could be added with the same format as the
" norma l_spec'' attribute. The value of the function would be the depth
of the chamfer.

It might be nice to use a unitted number rather than a real number
for the value of the depth attribute, since otherwise there will need
to be a convention about the units of depth. Of course a convention
is needed for the units of the boundary representation already.

The procedure for constructing a chamfer_face is as follows. For each
point Q on an edge being chamfered, let N be the chamfer_surface
normal at Q (determined either by the standard rule or by the value of

the normal_spec attribute) . Let P be the plane of N and the tangent to
the edge at Q. At a distance D (the depth of the chamfer) from Q in

the direction opposite N (into the material), construct a line
perpendicular to P. Where the line intersects the surfaces on either
side of the edge, cut the line off. The set of points on all such
lines comprises the chamfer_face

.

The hierarchy of chamfer_faces is as follows:

chamfer_face
chamfer_face_closed

chamfer_face_closed_advanced
chamfer_face_closed_elementary

chamfer_face_c losed_elementary_c ire le
chamfer_face_c losed_elementary_other

chamfer_face_open
chamfer_face_open_advanced
chamfer_face_open_elementary

chamfer_face_open_elementary_arc
chamfer_face_open_elementary_line

chamf er_ face_open_elementary_other

*)

ENTITY chamfer_face
SUPERTYPE OF (ONEOF

(chamfer_face_closed,
chamfer_face_open) )

;

depth

:

chamfer_path

:

normal_spec

:

LIST [1 : ?] OF edge_logical_structure

;

OPTIONAL LIST [1 : ?] OF STRING;

REAL;
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END_ENTITY

;

( * chainfer_face_closed* ******** ********************************************

This is a chamfer_face produced by following a list of
edge_logical_structures that form a closed loop.

It is a separate subtype since it is expected that the technique for
chamfering a closed loop will differ from the technique for chamfering
an open path.

*)

ENTITY chamfer_face_closed
SUPERTYPE OF (ONEOF

(chamfer_face_c losed_elementary

,

chamf er_face_closed_advanced)

)

SUBTYPE OF (chamfer_face)

;

END_ENTITY;

( * chamfer_face_closed_advanced *******************************************

This is a chamfer_face_closed in which one or more of the elements of

the chamfer_path does not have a line or circle as its underlying curve
type.

*)

ENTITY chamfer_face_closed_advanced SUBTYPE OF (chamfer_face_closed)

;

END_ENTITY;

( * chamfer_face_closed_elementary *****************************************

This is a chamfer_face_closed in which all of the elements of the
chamfer_path have a line or circle as their underlying curve type.

*)

ENTITY chamfer_face_closed_e 1ementary
SUPERTYPE OF (ONEOF

( chamfer_face_closed_elementary_circle

,

chamfer_face_c losed_elementary_other )

)

SUBTYPE OF ( chamfer_face_closed)

;

END_ENTITY;

( * chamfer_face_closed_elementary_circle

This is a chamfer_face produced by following a circular closed path.

The chamfer_path must have only one element . The curve underlying that
element must be a circle, and the start and end vertexes of the edge
underlying that element must be the same (implying that the edge
consists of the entire circle)

.

The third part of the "where" clause is messy because there are two
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ways of describing an edge - the edge_curve may be a curve or a

curve_logical_structure

.

*)

ENTITY chamfer_face_closed_elementary_circle
SUBTYPE OF {chamfer_face_closed_elementary )

;

WHERE
(* length of chamfer_path is 1 *)

SIZEOF (chamfer_path) = 1;

(* vertexes at ends are the same *)

chamfer_path [ 1 ] . edge_element . edge_start
= chamfer_path [ 1 ] . edge_element . edge_end;

(* the curve is a circle *)

( (curve_logical_structure
IN TYPEOF (chamfer_path [ 1 ]. edge_element . edge_curve ) ) AND

(circle
IN TYPEOF

(chamfer_path [ 1 ] , edge_element . edge_curve . curve_element ) ))

OR
(circle IN TYPEOF (chamfer_path[l].edge_element.edge_curve));

END_ENTITY;

( * chamfer_face_closed_elementary_other

This is a chamfer_face_closed_elementary in which the chamfer_path is

not a circle.

*)

ENTITY chamfer_face_closed_elementary_other
SUBTYPE OF (chamfer_face_closed_elementary )

;

END_ENTITY;

( * chamfer_face_open ******************************************************

This is a chamfer_face produced by following an open path. It has
optional end conditions for ramping in and out. If an end condition is

not specified at an end, the chamfer is at full depth near that end.

If one of chamfer_start_out and chamfer_start_in is present, both must
be present

.

If one of chamfer_end_in and chamfer_end_out is present, both must
be present

.

The following must hold:

0.0 <= chamfer_start_out < chamfer_start_in <=1.0 if present
0.0 <= chamfer_end_in < chamfer_end_out <=1.0 if present

There is probably a way to say that using "where" rules.
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The idea of chamfer_start_out and chamfer_start_in is that they
represent locations along the first edge_logical_structure of the
chamfer_path at which ramping into the edge begins and ends. The value
of the attribute represents the fraction of the distance along the
edge. The actual shape of the ramp needs to be specified by a

convention that gives shapes that can actually be made by a chamfer
tool. It the curve of the edge is a line, the ramp surface will be
cylindrical, and if the curve is a circle, the ramp surface will be
conical (possibly degenerating to a cylinder or plane) . In either
case, the surface will pass through the chamfer_start_out point and
the line on the chamfer_face generated by the chamfer_start_in point.
If the curve is some other curve, the shape of the ramp will be
unspecified

.

chamfer_end_out and chamfer_end_in are handled analogously to

chamfer_start_out and chamfer_start_in, except that they apply to

the last edge_logical_structure of the chamfer_path

.

It is permissible for there to be only element in the chamfer_path

.

In this case it is both the first element and the last element. If

all four optional attributes are present in this case, we must have
chamfer_start_in <= chamfer_end_in, as well as the inequalities above.

If a normal_spec is used, the value of the first function in the list
must be 0 if a chamfer_start is used, and the value of the last function
in the list must be 0 if a chamfer_end is used. A zero value for the
function simply implies that the standard rule for the normal is

used

.

Note that if a chamfer_start or chamfer_end is used, the in and out
points must be far enough apart to accommodate the ramp surface. This
could be a problem in chamfering detailed parts.

*)

ENTITY chamfer_face_open
SUPERTYPE OF (ONEOF

( chamfer_face_open_advanced,
chamfer_face_open_elementary)

)

SUBTYPE OF ( chamfer_face )

;

chamfer_start_out : OPTIONAL REAL;
chamfer_start_in : OPTIONAL REAL;
chamfer_end_in : OPTIONAL REAL;

chamfer_end_out : OPTIONAL REAL;
END_ENTITY;

( * chamfer_face_open_advanced **********************************************

This is a chamfer_face_open in which one or more of the elements of

the chamfer_path does not have a line or circle as its underlying curve
type.

*)
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ENTITY chamfer_face_open_advanced SUBTYPE OF (chamfer_face_open)

;

END_ENTITY;

( * chamfer_face_open_e lementary ********************************************

This is a chamfer_face_open in which all of the elements of the
chamfer_path have a line or circle as their underlying curve type.

*)

ENTITY chamfer_face_open_elementary
SUPERTYPE OF (ONEOF

( chamfer_face_open_elementary_arc

,

chamfer_face_open_elementary_l ine

,

chamfer_face_open_elementary_other)

)

SUBTYPE OF { chamfer_face_open)

;

END_ENTITY;

( * chamfer_face_open_e lementary_arc ****************************************

This is a chamfer_face produced by following an open path along a

circular arc.

The chamfer_path must have only one element. The curve underlying that
element must be a circle.

The second part of the "where" clause is messy because there are two
ways of describing an edge - the edge_curve may be a curve or a

curve_logical_structure

.

It is legal for the start and end of the arc to be in the same place,
but usually the arc will be less than a full circle.

*)

ENTITY chamfer_face_open_e lementary_arc
SUBTYPE OF (chamfer_face_open_elementary )

;

WHERE
(* length of chamfer_path is 1 *)

SIZEOF ( chamfer_path) = 1

;

(* the curve is a circle *)

( ( curve_logical_structure
IN TYPEOF ( chamfer_path [ 1 ]. edge_element . edge_curve ) ) AND

(circle
IN TYPEOF

( chamfer_path [ 1 ] . edge_element . edge_curve . curve_element ) )

)

OR
(circle IN TYPEOF (chamfer_path [ 1 ]. edge_element . edge_curve) )

;

END_ENTITY

;

( * chamfer_face_open_e 1 ementary_l ine ***************************************

This is a chamfer_face produced by following a line segment.
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The second part of the "where" clause is messy because there are two
ways of describing an edge - the edge_curve may be a curve or a

curve_logical_structure

.

*)

ENTITY chamfer_face_open_elementary_line
SUBTYPE OF ( chamfer_face_open_elementary)

;

WHERE
(* length of chamfer_path is 1 *)

SIZEOF ( chamfer_path) = 1

;

(* the curve is a line *)

( {curve_logical_structure
IN TYPEOF ( chamfer_path [ 1 ]. edge_element . edge_curve ) ) AND

( line
IN TYPEOF

(chamfer_path[l] . edge_element . edge_curve . curve_element ) )

)

OR
(line IN TYPEOF (chamfer_path [ 1 ]. edge_element . edge_curve) )

;

END_ENTITY;

( * chamfer_face_open_e lementary_other *************************************

This is a chamfer_face_open_elementary in which the chamfer_path is

not a single arc or line.

*)

ENTITY chamfer_face_open_e lementary_other
SUBTYPE OF (chamfer_face_open_elementary)

;

END_ENTITY

;

(* pose

A pose gives the position and orientation
The “direction" type of value is from the
The definition of this entity may change.

of a robot end-effector.
STEP geometry schema.

ENTITY pose;
translation: direction;
rotation: quaternion;

END_ENTITY

;

( * quaternion *************************************************************

A quaternion specifies an axis of rotation and an amount of rotation.

The X, y, and z components describe a unit vector in the direction of

the axis of rotation.

s is the sine of half the angle of rotation.
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The “where" clause is worded with exact equality. An implementation
would have to allow a range.

*)

ENTITY quaternion;
s : REAL

;

X : REAL

;

y: REAL;
z : REAL

;

WHERE
-1.0 < s

;

s <= 1.0;

( (x**2) + (y**2) + {z**2) )
= 1.0;

END_ENTITY;

(* trajectory *************************************************************

A trajectory is a series of robot poses.

*)

ENTITY trajectory;
elements: LIST [1 : ?] OF pose;

END_ENTITY

;

(* END ADACS_GEOMETRY ENTITY DEFINITIONS *)

^****************************************+*******************************j
^*************************************************************************j

END_SCHEMA;

(* ENT) ADACS_GEOMETRY SCHEMA *)

^*************************************************************************)
^*************************************************************************j
^*************************************************************************j

{* START GEOMETRY SCHEMA *)

{*

This includes geometry entities needed by the adacs_geometry schema
and/or the STEP topology schema. All "where" and "derive" clauses and
unused subtypes have been deleted. length_measure has been changed to

REAL.

Definitions of more advanced types of curves and surfaces will have to

be added to this to handle parts such as turbine blades and rotor hubs.

*)

SCHEMA geometry_schema

;
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(***********************************************************************)
(**************** ********************************************************J
(* START GEOMETRY ENTITY DEFINITIONS *)

ENTITY geometry
SUPERTYPE OF (ONEOF (point , vector, axis_placement , curve, surface));

END_ENTITY;

ENTITY point
SUPERTYPE OF ( cartes ian_point

)

SUBTYPE OF (geometry)

;

END_ENTITY;

ENTITY cartes ian_point
SUBTYPE OF (point);
x_coordinate ; REAL;
y_coordinate ; REAL;
z_coordinate : OPTIONAL REAL;

END_ENTITY;

ENTITY vector
SUPERTYPE OF (direction)
SUBTYPE OF (geometry)

;

END_ENTITy

;

ENTITY direction
SUBTYPE OF (vector);
X : REAL

;

y : REAL

;

z : OPTIONAL REAL;
END_ENTITY

;

ENTITY axis_placement
SUPERTYPE OF ( axis2_placement

)

SUBTYPE OF (geometry)

;

END_ENTITY;

ENTITY axis2_placement
SUBTYPE OF (axis_placement )

;

location : cartes ian_point

;

axis : OPTIONAL direction;
ref_direction : OPTIONAL direction;

END_ENTITY;

ENTITY curve
SUPERTYPE OF (ONEOF(line, conic))
SUBTYPE OF (geometry)

;

END_ENTITY

;

ENTITY line
SUBTYPE OF (curve)

;

pnt : cartesian_point

;

dir : direction;
END_ENTITY

;
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ENTITY conic
SUPERTYPE OF (ONEOF (circle, ellipse))
SUBTYPE OF (curve);

END_ENTITY

;

ENTITY circle
SUBTYPE OF (conic);
radius : REAL;
position : axis2_placement

;

END_ENTITY

;

ENTITY ellipse
SUBTYPE OF (conic);
semi_axis_l : REAL;
semi_axis_2 : REAL;
position : axis2_placeinent ;

END_ENTITY;

ENTITY surface
SUPERTYPE OF ( elementary_sur face

)

SUBTYPE OF (geometry)

;

END_ENTITY;

ENTITY elementary_surface
SUPERTYPE OF (ONEOF (plane, cylindrical_surface, conical_surface,

spherical_surface, toroidal_surface)

)

SUBTYPE OF (surface);
END_ENTITY;

ENTITY plane
SUBTYPE OF (elementary_surface)

;

position : axis2_placement

;

END_ENTITY

;

ENTITY cylindrical_surface
SUBTYPE OF ( elementary_surface )

;

radius : REAL;
position : axis2_placement

;

END_ENTITY

;

ENTITY conical_surface
SUBTYPE OF (elementary_surface)

;

semi_angle : REAL;
radius : REAL;
position : axis2_placement

;

END_ENTITY

;

ENTITY spherical_surface
SUBTYPE OF ( elementary_surface )

;

radius : REAL;
position : axis2 placement;

END_ENTITY

;

ENTITY toroidal_surface
SUBTYPE OF ( elementary_surface )

;
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major_radius : REAL;
minor_radius : REAL;
position : axis2_placement

;

END_ENTITY;

(* END GEOMETRY ENTITY DEFINITIONS *)

(*************************************************************************)
^*************************************************************************j

END_SCHEMA;

(* END GEOMETRY SCHEMA *)

(*************************************************************************)
(************************************************************************)
^*************************************************************************)

(* START TOPOLOGY SCHEMA *)

SCHEMA topology_scheina ;

^*************************************************************************j
^*************************************************************************)

(* START TOPOLOGY INTERFACE CLAUSES *)

REFERENCE FROM geometry_schema

;

(* END TOPOLOGY INTERFACE CLAUSES *)

^*************************************************************************j
^*************************************************************************j

(* START TOPOLOGY TYPE DEFINITIONS *)

TYPE curve_or_logical = SELECT (curve, curve_logical_structure)

;

END_TYPE;

TYPE edge_or_logical = SELECT (edge, edge_logical_structure )

;

END_TYPE;

TYPE loop_or_logical = SELECT (loop, loop_logical_structure )

;

END_TYPE;

TYPE surface_or_logical = SELECT (surface, surface_logical_structure )

;

END_TYPE;

TYPE face_or_logical = SELECT (face, face_logical_structure )

;

END_TYPE;

(* END TOPOLOGY TYPE DEFINITIONS *)

(************************+************************************************)
^*************************************************************************)

(* START TOPOLOGY ENTITY DEFINITIONS *)

ENTITY topology
SUPERTYPE OF (ONEOF (vertex, edge, loop, face, shell));

END_ENTITY

;

- 32 -



ENTITY vertex
SUBTYPE OF (topology);
vertex_point : OPTIONAL point;

END_ENTITY;

ENTITY edge
SUBTYPE OF
edge_start
edge_end
edge_curve

END_ENTITY

;

ENTITY curve_logical_structure

;

curve_element : curve;
flag : BOOLEAN;

END_ENTITY;

ENTITY edge_logical_structure;
edge_eleinent : edge;
flag : BOOLEAN;

END_ENTITY

;

ENTITY loop
SUPERTYPE OF (ONEOF ( vertex_loop, edge_loop)

)

SUBTYPE OF ( topo 1ogy )

;

END_ENTITY;

ENTITY vertex_loop
SUBTYPE OF (loop);
loop_vertex : vertex;

END_ENTITY;

ENTITY edge_loop
SUBTYPE OF (loop);

loop_edges : LIST [1 : ?] OF edge_or_logical

;

END_ENTITY

;

ENTITY face
SUBTYPE OF (topology);
outer_bound : OPTIONAL loop_or_logical

;

bounds : SET [1 : ?] OF loop_or_logical

;

face_surface : OPTIONAL surface_or_logical

;

END_ENTITY

;

ENTITY loop_logical_structure

;

loop_element : loop;

flag ; BOOLEAN;
END_ENTITY;

ENTITY surface_logical_structure

;

surface_element : surface;
flag : BOOLEAN;

END_ENTITY;

(topology)

;

: vertex;
: vertex;
: OPTIONAL curve_logical_structure

;
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ENTITY shell
SUPERTYPE OF (closed_shell

)

SUBTYPE OF (topology);
END_ENTITY;

ENTITY face_logical_structure

;

face_element : face;
flag : BOOLEAN;

END_ENTITY;

ENTITY closed_shell
SUBTYPE OF (shell);
shell_boundary : SET [1 : ?] OF face_or_logical

;

END_ENTITY;

ENTITY shell_logical_structure;
shell_eleinent : shell;
flag : BOOLEAN;

END_ENTITY;

(* END TOPOLOGY ENTITY DEFINITIONS *)

(*************************************************************************j
^*************************************************************************j

END_SCHEMA;

(* END TOPOLOGY SCHEMA *)

^*************************************************************************j
^*************************************************************************j
^*************************************************************************j
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